The “Clockwise/Spiral Rule”

By David Anderson

There is a technique known as the “Clockwise/Spiral Rule” which enables any C programmer
to parse in their head any C declaration!
There are three simple steps to follow:
1. Starting with the unknown element, move in a spiral/clockwise direction; when
encountering the following elements replace them with the corresponding english

statements:
o [X]or[] => Array X size of... or Array undefined size of...
e (typel, type2) =>function passingtypel and type2 returning...
o * => pointer(s) to...

2. Keep doing this in a spiral/clockwise direction until all tokens have been covered.
3. Always resolve anything in parenthesis first!

Example #1: Simple declaration

| 4o+
|~

char *str[10];

Question we ask ourselves: What is str?
“stris an...
e We move in a spiral clockwise direction starting with ‘str’ and the first character we
see is a ‘[* so, that means we have an array, so...
“str is an array 10 of...
e Continue in a spiral clockwise direction, and the next thing we encounter is the ‘*’
so, that means we have pointers, so...
“str is an array 10 of pointers to...
e Continue in a spiral direction and we see the end of the line (the *;’), so keep going
and we get to the type ‘char’, so...
“str is an array 10 of pointers to char”
e We have now “visited” every token; therefore we are done!

Example #2: Pointer to Function declaration

| +---+
| |+-+]
1~ 1
char *(*fp)(int, float *);

A A A || |

Question we ask ourselves: What is fp?

“fpis a...

Moving in a spiral clockwise direction, the first thing we see is a ‘)’; therefore, fp is
inside parenthesis, so we continue the spiral inside the parenthesis and the next
character seen is the ‘*’, so...

“fp is a pointer to...

We are now out of the parenthesis and continuing in a spiral clockwise direction, we
see the ‘(‘; therefore, we have a function, so...

“fp is a pointer to a function passing an int and a pointer to float
returning...

Continuing in a spiral fashion, we then see the ‘*’ character, so...

“fp is a pointer to a function passing an int and a pointer to float
returning a pointer to...

Continuing in a spiral fashion we see the ‘;’, but we haven't visited all tokens, so we
continue and finally get to the type ‘char’, so...

“fp is a pointer to a function passing an int and a pointer to float
returning a pointer to a char”

Example #3: The “Ultimate”

R T TR +
| bk
[I
|~ [~ 1 I

void (*signal(int, void (*fp)(int)))(int);

Ao I ~ o] I

| $------ + | +--+] |
I SREEEEEEE + I
T T +

Question we ask ourselves: What is ‘signal’?

Notice that signal is inside parenthesis, so we must resolve this first!

Moving in a clockwise direction we see ‘(‘ so we have...

“signal is a function passing an int and a...

Hmmm, we can use this same rule on ‘fp’, so... What is fp? fp is also inside
parenthesis so continuing we see an ‘*’, so...

fp is a pointer to...

Continue in a spiral clockwise direction and we get to ‘(’, so...

“fp is a pointer to a function passing int returning...”

Now we continue out of the function parenthesis and we see void, so...

“fp is a pointer to a function passing int returning nothing (void)”

We have finished with fp so let's catch up with ‘signal’, we now have...

“signal is a function passing an int and a pointer to a function passing
an int returning nothing (void) returning...

We are still inside parenthesis so the next character seen is a “*’, so...

“signal is a function passing an int and a pointer to a function passing
an int returning nothing (void) returning a pointer to...

We have now resolved the items within parenthesis, so continuing clockwise, we
then see another ‘(’, so...

“signal is a function passing an int and a pointer to a function passing
an int returning nothing (void) returning a pointer to a function passing
an int returning...

Finally we continue and the only thing left is the word ‘void’, so the final complete
definition for signal is:

“signal is a function passing an int and a pointer to a function passing
an int returning nothing (void) returning a pointer to a function passing
an int returning nothing (void)”

The same rule is applied for const and volatile. For Example:
const char *chptr;

e Now, what is chptr??
“chptr is a pointer to a char constant”

How about this one:
char * const chptr;

e Now, what is chptr??
“chptr is a constant pointer to char”

Finally:
volatile char * const chptr;

e Now, what is chptr??
“chptr is a constant pointer to a char volatile.”

Practice this rule with the examples found in K&R Il on page 122.

Copyright © 1993,1994 David Anderson
This article may be freely distributed as long as the author's name and this notice are retained.

