
Architecture des
Ordinateurs
Chapitre 6 : Traitement des interruptions

Jacques Supcik, Daniel Gachet, Luca Haab

2021‑12‑22

Table desmatières

6 Traitement des interruptions 1
6.1 Concept général . 1

6.1.1 Types d’événements . 2
6.1.2 Séquence d’interruption . 5
6.1.3 Table des vecteurs d’interruptions . 6
6.1.4 Commutation de contexte . 7
6.1.5 Interruptions imbriquées . 8
6.1.6 Gestion de la levée des interruptions . 10

6.2 Interruptions matérielles . 10
6.2.1 Scrutation logicielle . 11
6.2.2 Priorité d’interruption . 12
6.2.3 Interruption vectorisée . 13

6.3 Profil A . 14
6.3.1 Sources d’interruptions . 15
6.3.2 Table des vecteurs d’interruptions . 15
6.3.3 Traitement de l’interruption par le CPU . 16
6.3.4 Traitement de l’interruption par le logiciel . 18
6.3.5 Principe pour le traitement des interruptions matérielles 20
6.3.6 Gestion de la levée d’interruptions . 21
6.3.7 Priorité et préemption . 22
6.3.8 Contrôleur d’interruptions . 23
6.3.9 Unité de gestion des entrées/sorties . 25

6.4 Profil M . 26
6.4.1 Sources d’interruptions . 26
6.4.2 Table des vecteurs d’interruptions . 27
6.4.3 Traitement de l’interruption par le CPU . 29
6.4.4 Priorité et préemption . 31
6.4.5 Gestion de la levée des interruptions . 32
6.4.6 Contrôleur d’interruptions . 32
6.4.7 Unité de gestion des entrées/sorties . 33

i

HEIA‑FR Architecture des Ordinateurs

6.5 Exercices . 34
6.5.1 Exercice 1 : Concept général . 34
6.5.2 Exercice 2 : Types d’événements . 35
6.5.3 Exercice 3 : Séquence d’interruption . 35
6.5.4 Exercice 4 : Table des vecteurs d’interruptions 35
6.5.5 Exercice 5 : Commutation de contexte . 35
6.5.6 Exercice 6 : Interruptions imbriquées . 35
6.5.7 Exercice 7 : Section critique . 35
6.5.8 Exercice 8 : Interruptions matérielles . 36
6.5.9 Exercice 9 : Génération d’exceptions . 36
6.5.10 Exercice 10 : Gestion de la levée d’interruptions 36
6.5.11 Exercice 11 : Priorité d’interruptions . 36
6.5.12 Exercice 12 : Traitement d’un bouton‑poussoir par interruption 36

ii Jacques Supcik, Daniel Gachet, Luca Haab

6 Traitement des interruptions

Les interruptions sont un aspect incontournable des systèmes à microprocesseurs. Elles per‑
mettent d’interrompre temporairement l’exécution d’un programme informatique pour traiter des
événements prioritaires.

Les périphériques d’entrées/sorties les utilisent généralement pour signaler des événements asyn‑
chrones nécessitant un traitement en temps réel, telle la fin de période d’une horloge, la complétion
d’une tâche. Elles servent également àéconomiserdu tempsCPUenévitantdesbouclesde scrutation
(Polling Loop).

Des défaillances du code, des exceptions, peuvent également générer des interruptions temporaires
du programme pour être traitées. Elles sont souvent dues à des dysfonctionnements inopinés du lo‑
giciel résultant de son exécution, par exemple des instructions erronées, des calculs arithmétiques
incorrects ou des accès non autorisés à la mémoire.

Les systèmes d’exploitation modernes utilisent les interruptions logicielles pour réaliser les appels
système. Ce type d’interruptions permet d’isoler les processus utilisateurs, des pilotes de périphé‑
riques et des fonctions du noyau.

6.1 Concept général

Le traitement des interruptions (Interrupt Handling) est un sujet indissociable de la programmation
de systèmes embarqués et de systèmes sur puce (figure 6.1).

Une interruption (Interrupt) peut être vue comme un appel à une routine de traitement (ISR ‑ Inter‑
rupt Service Routine). Déclenchée par un événement interne ou externe au processeur, elle suspend
l’exécution du programme en cours, puis appelle une routine, laquelle traite l’événement pour finale‑
ment retourner au programme interrompu. Hormis un délai, le traitement correct d’une interruption
ne doit pas altérer le comportement d’un programme en cours d’exécution.

1

HEIA‑FR Architecture des Ordinateurs

2) Appel ISR
 Instruction i-...
 Instruction i-2
 Instruction i-1
 Instruction i
 Instruction i+1
 Instruction i+2
 Instruction i+...

Programme en
cours d'exécution

Début de la routine
 Instruction j
 Instruction j+1
 Instruction j+2
 Instruction j+...
Fin de la routine

Routine de traitement de
l'interruption (ISR)

1) Evénement

4) Retour

3)
 T

ra
ite

m
en

t

FiGURE 6.1 – Principe

6.1.1 Types d’événements

Les événements externes auCPU, levés par des périphériques, génèrent des interruptionsmatérielles.
Ces interruptions sont dites asynchrones, car elles surviennent indépendamment de l’exécution du
programme. Par contre, les événements internes, causés par des interruptions logicielles, des appels
système, ou par des exceptions, des dysfonctionnements du programme lors de son exécution,sont
dits synchrones. Elles sont dues à l’exécution du code et de ses instructions. Le signal “reset” est le
dernier type d’événements. Il provoque le reset du processeur et de la réinitialisation de ses périphé‑
riques.

Interruptionsmatérielles

Les interruptions permettent de traiter de façon asynchrone des événements levés par le matériel
(Hardware Interrupt). Cette capacité à traiter des événements spontanés procure une grande réacti‑
vité au système et à ses applications. Elles offrent un traitement rapide et approprié de l’événement
(figure 6.2).

Périphérique
d'entrées/sorties

Fonction de
traitement

Evénement

Données

Requête d'interruption

FiGURE 6.2 – Interruption matérielle

Il existe unemultitude d’exemples pour illustrer leurs utilités. Pour n’en citer qu’un, prenons une inter‑
face de communication. Lors d’échanges d’information entre un pilote et un périphérique d’entrées/‑

2 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

sorties gérant une interface de communication, interface ayant un comportement non prévisible/a‑
léatoire, il est souhaitable que le périphérique puisse lui‑même prendre l’initiative des échanges, en
forçant le processeur à suspendre immédiatement l’exécution du programme en cours pour laisser le
pilote traiter les requêtes (réceptions ou envois de données).

Des interruptionsmatérielles peuvent également êtremises enœuvre pour faciliter le débogage d’ap‑
plications logicielles lors de leur réalisation. Certains processeurs implémentent une infrastructure
permettant de stopper l’exécution du programme en surveillant le bus d’adresses et/ou de données
(Hardware Breakpoint, Watchpoint). Si l’adresse et/ou la donnée passant sur leur bus respectif cor‑
respond à un point d’arrêt, le processeur suspend l’exécution du programme et active la session de
débogage.

Interruptions logicielles

Les interruptions logicielles (Software Interrupt) permettent à un processus en espace utilisateur de
franchir la barrière de protection enquittant sonmodenonprivilégié pour accéder aumodeprivilégié
du μP et ainsi aux fonctions fournies par l’OS dans l’espace noyau (figure 6.3). Cette fonctionnalité est
largement utilisée par les systèmes d’exploitation (GNU/Linux,Windows, MacOS, etc.) pour les appels
système (syscall). Les processeurs ARM proposent l’instruction “SVC” (Supervisor Call) pour générer
cette interruption logicielle.

Routine de
traitement

Application Appel système
(syscall)

Espace utilisateur

Espace noyau

FiGURE 6.3 – Interruption logicielle

Les interruptions logicielles permettent également à des applications de communiquer avec des pro‑
grammes (firmware, silicon software) contenus dans une mémoire non volatile du processeur ou de
l’ordinateur. BIOS (Basic Input/Output System) des machines “Windows” est un exemple typique.

Jacques Supcik, Daniel Gachet, Luca Haab 3

HEIA‑FR Architecture des Ordinateurs

Elles permettent aussi à des outils de développement de poser des points d’arrêt (Software Break‑
points) facilitant le débogage d’applications. Les processeurs ARM proposent l’instruction “BKPT”
(Break Point) pour générer cette interruption logicielle.

Exceptions

Les défaillances et dysfonctionnements dans les logiciels sont monnaie courante. Lors de l’exécu‑
tion d’un programme, des erreurs peuvent survenir et perturber son bon déroulement. Les μP im‑
plémentent tout un arsenal de mécanismes de reconnaissance de ces exceptions et fournissent aux
logiciels une série d’interruptions spécifiques permettant un traitement approprié (figure 6.4).

Routine de
traitementApplication

Dysfonctionnement

Exception

FiGURE 6.4 – Exceptions

Les exceptions logicielles les plus usuelles sont dues à des instructions illégales, des erreurs arith‑
métiques ou des violations de privilèges.

— Une instruction illégale (Undefined Instruction) est une instruction pas supportée et pas implé‑
mentée par le jeu d’instructions du processeur. La levée de cette exception permet au logiciel
de réaliser par exemple des routines émulant le comportement de ces instructions non défi‑
nies.

— Les unités de calculs (arithmétique et/ou à virgule flottante) sont conçues pour signaler des
erreurs de calcul, telles les divisions par zéro. La levée d’une exception permet de détecter ce
type d’erreurs et de réaliser un traitement approprié.

— Les processeurs implémentant plusieursmodes de fonctionnement avec différents niveaux de
privilèges sont capables de détecter des violations de privilèges. Ces violations résultent d’ac‑
cès à des ressources non autorisées, tel l’usage d’instructions nécessitant un niveau de privi‑
lèges supérieur ou des accès à des zones mémoires protégées.

Les exceptionsmatérielles sont dues généralement à des erreurs du logiciel, mais détectées par des
unités externes à l’unité centrale de traitement du processeur (CPU). Les exceptions matérielles les
plus courantes sont des erreurs d’accès sur le bus de données (Bus Error) ou sur le bus d’adresses
(Address Error) ainsi que le “reset” du processeur.

4 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

— Des contrôleurs de périphériques ne répondant pas aux cycles d’accès dans les temps spécifiés
soit par configuration, soit par le matériel sont en principe à l’origine des erreurs sur le bus
de données et détectées par l’unité d’interface du bus processeur (BIU ‑ Bus Interface Unit). La
causede ces erreurs est généralement la non‑activationde l’horloge cadençant les contrôleurs.

— Deux causes principales sont à l’origine des erreurs sur le bus d’adresses, les accès non alignés
et les accès non autorisés. La levée d’exceptions pour des accès non alignées dépend de l’im‑
plémentation de la BIU et de sa capacité à effectuer des accès multiples pour lire ou écrire
des données non alignées. LesMMU/MPU (MemoryManagement Unit / Memory Protection Unit)
fournissent les outils indispensables pour la protection des zones mémoires et l’isolation des
processus. Elles sont conçues en autre pour détecter des violations d’accès à la mémoire, telle
que des accès en lecture ou écriture non autorisés, l’exécution de code non autorisé, la protec‑
tion de zones mémoire protégées pour un processus.

Reset du processeur

Demultiples causes peuvent être à l’origine du reset du processeur, de sa réinitialisation. La première
estbiennaturellement lamise sous tensionde la carteprocesseur.Cettemise sous tensionest cruciale.
Une fois stabilisé, le signal “reset” est levé. Détecté par le processeur et l’ensemble de ses unités
et contrôleurs, il sert à leur réinitialisation. Les chiens de garde (Watchdog) sont la deuxième cause
importante. Ils servent à surveiller des interblocages logiciels (Deadlock). En casdeblocage, les chiens
de garde activent le signal “reset” et forcent la réinitialisation du système.

6.1.2 Séquence d’interruption

Lors de la levée d’une interruption suite à un événement interne ou externe, le processeur suspend
l’exécution du programme en cours et effectue un traitement approprié à l’événement. Ce traitement
se déroule en quatre étapes principales (figure 6.5).

Evénement

1

2 4

3

FiGURE 6.5 – Séquence d’interruption

1. Attente d’autorisation pour le traitement des interruptions
2. Sauvegarde du contexte du programme en cours

Jacques Supcik, Daniel Gachet, Luca Haab 5

HEIA‑FR Architecture des Ordinateurs

3. Exécution de la routine de traitement
4. Restauration du contexte et retour au programme suspendu

Lapremièreétapen’estprésenteque lorsde requêtesd’interruptions levéespardesévénementsasyn‑
chrones. Lors de tels événements, le CPUne peut effectuer le traitement que si le traitement des inter‑
ruptions est autorisé. La première cause de désactivation est le traitement d’une interruption. Celui‑
ci bloque en effet le traitement d’autres interruptions tant que le traitement de l’interruption active
n’est pas terminé. La désactivation des interruptions est également unmécanisme indispensable à la
conception d’applications logicielles de bas niveau, proche du CPU et de ses périphériques. Il permet
en effet de protéger certaines sections critiques et éviter ainsi des conditions de concurrence (Race
Conditions) entre différentes routines de traitement. Un des exemples typiques sont des données par‑
tagées et accédées par une routine de traitement d’interruption (ISR) et des routines exécutées par
une tâche (Thread). Lors d’interruptions synchrones, cette étape n’existe pas, car la cause de l’événe‑
ment est l’exécution de l’instruction. Dans de tels cas, le traitement de l’événement s’effectue immé‑
diatement.

La deuxième étape commence aussitôt le traitement des interruptions autorisé. Le CPU suspend im‑
médiatement le programme en cours, effectue une commutation de contexte avant de pouvoir appe‑
ler la routine de traitement d’interruption. Dans une première phase, le CPU sauve l’état courant du
programme, l’adresse de retour vers le programmeen cours d’exécution et les registres du processeur.
Puis, il bloque les interruptions et change son mode d’opération pour un mode privilégié adapté au
traitement de l’événement. Avant de chercher dans la table des vecteurs d’interruptions la routine de
traitement à exécuter. Selon l’architecture du processeur, ces phases sont effectuées complètement
par le CPU ou réparties entre CPU et logiciel.

En troisième étape, l’identité de la source de l’événement déterminée, son traitement peut s’effec‑
tuer.

Enquatrièmeétape, une fois l’exécutionde la routinede traitement terminée, il ne restequ’à restaurer
le contenu des registres du CPU pour rétablir le contexte du programme suspendu afin qu’il puisse
poursuivre son exécution où il a été interrompu. Selon l’architecture du processeur, le CPU effectue
directement toutes les opérations nécessaires lors du retour de la routinede traitement. Avecd’autres
architectures, cette tâche est déléguée au logiciel.

6.1.3 Table des vecteurs d’interruptions

La table des vecteurs d’interruptions sert d’interface entre le HW et le SW (figure 6.6). Le logiciel l’uti‑
lisepour configurer leCPUafinqu’il puisse appeler la routined’interruptionappropriéeà l’événement
à traiter. Cette table est indispensable pour adapter le μP aux besoins spécifiques du système. Selon

6 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

les architectures, l’emplacement de cette table peut être fixe ou laissé au libre choix du logiciel et se
trouver aussi bien enmémoire vive quemorte.

CPU

Interruptions Matériel

Interruptions Logiciel

Exceptions.

Vecteur

...

...

...

...

...

Table des vecteurs
Routine de
traitement

Routine de
traitement

Routine de
traitement

[0]

[n-1]

[..]
[..]

[..]
[..]

Source d'interruption Numéro du vecteur
d'interruption

...

FiGURE 6.6 – Traitement des interruptions au niveau du μP

Lors de la levée d’une interruption, le CPU identifie la source d’interruption à laquelle un numéro
fixe de vecteur d’interruption lui est associé. Avec ce numéro, le CPU accède à la table des vecteurs
d’interruption afin d’obtenir le vecteur d’interruption et appeler la routine de traitement. Ce vecteur
correspond, selon l’architecture du μP, soit à une instruction, soit à l’adresse de la routine de traite‑
ment.

Quelques définitions utiles
— La source d’interruption (Interrupt Source) est le signal ou l’événement capable

de lever une interruption ou de générer une exception
— La table des vecteurs d’interruptions (Interrupt Vector Table) contient les ins‑

tructions ou les adresses des routines d’interruptions permettant de traiter les
événements

— Le vecteur d’interruption (Interrupt Vector), contenu de la table des vecteurs,
sur les processeurs ARM il correspond soit à une instruction, soit à l’adresse de la
routine de traitement

— Lenuméroduvecteurd’interruption (Interrupt Vector Number) est l’index dans
la table des vecteurs d’interruptions

6.1.4 Commutation de contexte

L’action de sauver les registres du μP pour appeler la routine de traitement lorsqu’une interruption
est levée, ou de les restaurer à la fin du traitement de l’interruption, s’appelle la commutation de

Jacques Supcik, Daniel Gachet, Luca Haab 7

HEIA‑FR Architecture des Ordinateurs

contexte (Context Switching). Ces deux commutations de contexte s’effectuent lors de la deuxième et
quatrième étape de la séquence de traitement (figure 6.7).

Evénement

Commutation de contexte

2 4

FiGURE 6.7 – Séquence de traitement

Le temps qui s’écoule entre la levée de l’interruption et l’exécution de la première instruction de la
routinede traitementd’interruption est appelé latenced’interruption (Interrupt Latency) (figure 6.8).
Elle est due à un facteur principal, le temps de désactivation des interruptions, temps durant lequel le
μP n’est pas autorisé à traiter des événements externes. Dans un système fréquemment interrompu,
la valeur de cette latence influence considérablement le comportement du système et peut dégrader
fortement ses performances. Afin de réduire la latence, les routines de traitement nedoivent effectuer
que le strict minimum d’opérations afin de satisfaire le μP et ses contrôleurs et déléguer le maximum
du traitement dans des tâches (Thread).

Evénement

Latence

Gigue

FiGURE 6.8 – Latence et gigue d’interruption

La variation de la latence d’interruption est appelée gigue d’interruption (Interrupt Jitter). Son am‑
plitude est principalement due aux variations de la durée de désactivation des interruptions. La gigue
peut poser des problèmes sérieux dans des systèmes temps réel ayant des contraintes de temps exi‑
geantes.

6.1.5 Interruptions imbriquées

Les systèmes embarqués et les systèmes sur puce (Soc) sont généralement confrontés à devoir piloter
simultanément un grand nombre de périphériques différents et gérer une multitude de sources d’in‑
terruptions. Si les systèmes d’exploitation riche ne permettent en principe qu’un traitement séquen‑

8 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

tiel des interruptions, les OS temps réel (RTOS) proposent généralement un support logiciel pour un
traitement imbriqué des interruptions (Nested Interrupt Handling) pour les processeurs disposant de
cette capacité de traitement.

Dans un système de traitement d’interruptions imbriquées, chaque source d’interruptions reçoit un
niveau de priorité. Ce niveau de priorité est généralement configurable et peut être unique ou par‑
tagé entre plusieurs sources d’interruptions. Lors du traitement d’une interruption (1), si une source
avec un niveau de priorité supérieure lève une interruption, le CPU suspend la routine en cours de
traitement pour traiter la source plus prioritaire (2) (figure 6.9).

Evénement 2

TextEvénement 1

1

2

suspendu

FiGURE 6.9 – Traitement imbriqué pour une source prioritaire

Par contre lors du traitement d’une interruption, si une source avec un niveau de priorité inférieure
lève une interruption, le CPU termine d’abord le traitement de la routine en cours (1) avant de traiter
la nouvelle source (2) (figure 6.10).

Evénement 2

TextEvénement 1

1 2

retardé

FiGURE 6.10 – Traitement retardé pour une source secondaire

Ce mécanisme est très intéressant, car il permet de réduire le temps de latence pour les sources
d’interruptions prioritaires. Par contre, il peut rallonger le temps de traitement des sources secon‑
daires.

Lors de la conception des routines de traitement d’interruptions, il est important d’ef‑
fectuer le minimumd’opérations, ceci afin de garantir de bon temps de réaction du sys‑
tème. Si certains événements demandent de longs traitements, il est plus judicieux de
les déléguer à des tâches d’arrière‑plan (Background Task).

Jacques Supcik, Daniel Gachet, Luca Haab 9

HEIA‑FR Architecture des Ordinateurs

6.1.6 Gestion de la levée des interruptions

La conception d’applications mettant en œuvre des tâches de fond (Background Tasks) coopérant
avec des tâches événementielles (Event‑Driven Tasks) requiert un soin tout particulier. Dans de tels
programmes, il est courant d’être confronté à des situations de concurrence lors d’accès à des res‑
sources partagées entre les différentes tâches (Race Condition).

Pour protéger de telles ressources, il est souvent nécessaire d’interdire la levée des interruptions le
temps du traitement. Dans une telle situation, il est impératif de garantir à une tâche de fond qu’elle
ne soit pas interrompue par une tâche événementielle concurrente, une interruption, lorsqu’elle ac‑
cède aux données. La portion de code impliquée dans ce traitement est nommée en programmation
concurrente section critique (Critical Sections).

Selon la nature de la ressource à protéger, les interruptions sont bloquées à des niveaux différents. Si
la ressource est globale, tel le compteur d’un sémaphore sur un μPmono‑coeur, la protection s’effec‑
tue généralement au niveau du CPU en inhibant toutes les interruptions. Par contre, s’il s’agit d’une
ressource proche d’un périphérique, il est usuel de masquer les interruptions au niveau du contrô‑
leur du périphérique. Le CPU ainsi que les contrôleurs placés dans la chaîne de traitement des inter‑
ruptions disposent de registres spéciaux permettant au logiciel de gérer la levée des interruptions
asynchrones.

6.2 Interruptionsmatérielles

Tout changement d’état d’un périphérique se reflète dans ses registres d’état (STAT ‑ Status Register).
Pour détecter ces changements, le logiciel peut scruter ces registres via le bus μP. Cette technique
fonctionne bien pour des changements périodiques ou excessivement rapides, mais requiert beau‑
coup de temps CPU s’ils sont sporadiques. Pour soulager le CPU et éviter ainsi la scrutation, une ligne
de requêtes d’interruptions (IRQ‑Line ‑ Interrupt Request Line) permet au périphérique de signaler
tous ses changements au CPU (figure 6.11).

Ligne de requêtes d'interruptions

(IRQ-Line)

Bus µPPériphérique E/S

RX
TX

STAT
CTRL

CPU

FiGURE 6.11 – Ligne de requêtes d’interruptions

10 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

En activant la IRQ‑Line, le CPU suspend l’exécutionduprogrammeen cours pour exécuter une routine
de traitement des événements du périphérique (Interrupt Service Routine ou Interrupt Handler).

Ce mécanisme fonctionne parfaitement pour un périphérique, mais qu’en est‑il pour plusieurs péri‑
phériques? La solution se trouve dans les réponses à ces trois questions :

— Comment connecter les périphériques au CPU?
— Comment identifier le périphérique ayant levé une interruption?
— Comment arbitrer des requêtes simultanées provenant de plusieurs périphériques?

Trois techniques permettent de répondre à ces questions :

— Scrutation logicielle
— Priorité d’interruption
— Interruption vectorisée

6.2.1 Scrutation logicielle

La première solution consiste à connecter tous les périphériques en parallèle sur une même ligne de
requêtes d’interruptions (figure 6.12). Cette ligne forme ainsi un “OU” câblé.

IR
Q

-L
in

e

Périphérique
E/S

Périphérique
E/S

Périphérique
E/S

Bus µP

CPU

FiGURE 6.12 – Connexion de périphériques pour la scrutation logicielle

La gestion des périphériques s’effectue grâce à leurs registres de contrôle et d’état. Ils permettent de
bloquer et d’autoriser la levée d’interruptions ainsi que d’identifier le périphérique ayant levé l’inter‑
ruption.

Si une interruption apparaît, le CPU suspend le programme en cours et exécute la routine de traite‑
ment d’interruptions. Cette routine interroge successivement tous les périphériques connectés sur la
ligne d’interruption afin de déterminer le ou les périphériques ayant activé le signal. Cette technique
se nomme scrutation logicielle (Interrupt Polling), dont voici deux implémentations principales :

— Priorité fixe
les périphériques sont scrutés dans un ordre précis et déterminé à l’avance (Fixed Priority). Le
1er périphérique rencontré ayant levé une interruption est servi, puis le 2e et ainsi de suite.

Jacques Supcik, Daniel Gachet, Luca Haab 11

HEIA‑FR Architecture des Ordinateurs

— Tourniquet
les périphériques sont ordonnés comme dans la premièreméthode, mais la recherche débute
depuis le dernier périphérique servi (Round‑Robin). La recherche recommence au début,
lorsque la fin de la liste est atteinte.

La scrutation logicielle est simple àmettre enœuvre,mais peut prendre énormément de temps selon
le nombre de périphériques connectés au CPU.

Cette technique est par contre couramment utilisée par des périphériques capables de lever de diffé‑
rentes interruptions pour signaler divers types d’événements, telles la réception et la transmission de
données. Dans l’exemple ci‑dessous (figure 6.13), le périphérique lève une interruption si la condition
suivante est vraie :

(TIE ∧ TXE) ∨ (RIE ∧ RXE)

CPU

Bus µP

STAT

CTRL TXE RIERXE TIE

TXR RXR

RX

TX

Périphérique E/S

IRQ-Line

FiGURE 6.13 – Logique d’interruption d’un périphérique pour la scrutation logicielle

La routine de traitement du pilote logiciel (io_handler) distingue entre une interruption due à l’émis‑
sion (TX) et/ou à la réception (RX) en testant les fanions des registres de contrôle et d’état.

1 void io_handler() {
2 if ((io->ctrl & CTRL_TIE) && (io->stat & STAT_TXR))
3 // interruption levée en émission
4
5 if ((io->ctrl & CTRL_RIE) && (io->stat & STAT_RXR))
6 // interruption levée en réception
7 }

6.2.2 Priorité d’interruption

Avec la deuxième solution, chaque périphérique dispose d’une ligne de requêtes d’interruptions dé‑
diée connectée directement au CPU (figure 6.14).

12 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

IR
Q

-L
in

e
1

IR
Q

-L
in

e
2

IR
Q

-L
in

e
3

Périphérique
E/S

Périphérique
E/S

Périphérique
E/S

Bus µP

CPU

FiGURE 6.14 – Connexion de périphériques pour la priorité d’interruption

Le CPU affecte à chacune de ces lignes de requêtes d’interruptions une priorité matérielle fixe et
unique, par exemple aux lignes IRQ‑Line1, IRQ‑Line2 et IRQ‑Line3, le CPU accorde les priorités 1, 2
et 3. Lorsqu’une ou plusieurs requêtes d’interruptions sont levées, le CPU examine les lignes de re‑
quêtes d’interruptions et détermine la ligne active la plus prioritaire afin de servir le périphérique
correspondant.

Pour chaque priorité d’interruptions (Interrupt Priority), le CPU dispose d’une entrée dans sa table
des vecteurs d’interruptions. Ceci permet aux pilotes logiciels d’attacher une routine de traitement
propre à chaque périphérique.

Cette technique améliore grandement le traitement des interruptions, car elle élimine la scrutation
logicielle des périphériques. Elle permet aussi un traitement imbriqué des interruptions et réduit la
latence pour les événements les plus importants et les plus prioritaires. Cependant, elle se butte
au nombre de lignes de requêtes d’interruptions que les CPU disposent, souvent qu’une ou deux
lignes.

6.2.3 Interruption vectorisée

La troisième solution consiste à générer des interruptions vectorisées (Vectored Interrupt). Celle‑ci se
caractérise par la mise en œuvre d’un contrôleur d’interruptions permettant de connecter une mul‑
titude de périphériques, chacun avec une ou plusieurs lignes de requêtes d’interruptions dédiées (fi‑
gure 6.15). Il associe à chaque ligne un numéro de vecteur d’interruptions unique (Unique Interrupt
Vector Number).

Lors de la levée d’une interruption, le contrôleur dispose d’une logique interne pour prioriser et iden‑
tifier la source d’interruption. Une fois la source identifiée, le contrôleur informe le CPU. Là, il existe
deux réalisations possibles d’interface entre le contrôleur et le CPU.

Avec la première interface, le contrôleur d’interruption informe le CPU en activant une ligne de re‑

Jacques Supcik, Daniel Gachet, Luca Haab 13

HEIA‑FR Architecture des Ordinateurs

Périphérique
E/S

Périphérique
E/S

Périphérique
E/S

Bus µP

IR
Q

-L
in

e

CPU

Co
nt

rô
le

ur

d'
In

te
rr

up
tio

ns

FiGURE 6.15 – Connexion de périphériques pour des interruptions vectorisées

quêtes d’interruptions (IRQ‑Line), pour laquelle, il n’existe qu’une seule entrée dans la table des vec‑
teurs d’interruptions. Lorsque l’interruption est levée, la routine de traitement attachée dans la table
des vecteurs acquiert l’identité de la source d’interruption, le numéro de vecteur, en lisant un registre
du contrôleur d’interruptions. La source connue, il appelle ensuite la routine de traitement correspon‑
dant au périphérique. Avec ce type d’interface, le logiciel effectue l’essentiel de l’identification de la
source.

Avec la deuxième interface, le contrôleur d’interruption informe toujours le CPU en activant une ligne
de requêtes d’interruptions (IRQ‑Line). Par contre, lorsque l’interruption est levée, c’est le CPU qui
acquiert l’identité de la source d’interruption, le numéro de vecteur. Il utilise ensuite ce numéro de
vecteur pour appeler la routine de traitement correspondant au périphérique, laquelle a été précé‑
demment attachée directement dans la table des vecteurs. Avec cette interface, l’essentiel de l’iden‑
tification de la source d’interruption étant réalisée par le contrôleur et le CPU, le logiciel n’a plus qu’à
effectuer le traitement approprié à l’événement.

Les interruptions vectorisées sont spécialement bien adaptées à un traitement imbriqué des interrup‑
tions.

6.3 Profil A

Les processeurs du profil A implémentent une gestion plutôt basique du traitement des interruptions
au niveau du CPU. Le CPU effectue seulement les opérations impératives, sauvegarde de l’adresse de
retour et du registre d’état ainsi que l’appel de la routine de traitement de bas niveau. Il laisse la plus
grande partie des opérations à effectuer pour le traitement des interruptions et exceptions au logiciel.
Ce choix offre une plus grande liberté pour la réalisation des logiciels et plus particulièrement des
systèmes d’exploitation riches.

14 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

Les exemples de ce chapitre se basent sur le processeur ARMCortex‑A8 de l’architecture
ARMv7‑A et plus spécialement le μP de TI AM3358.

6.3.1 Sources d’interruptions

Les μP du profil A 1 connaissent 7 sources d’interruptions (figure 6.16) :

— Les exceptions (Reset, Undefined Instructions, Data Abort, Prefetch Abort)
— Les interruptions matérielles (IRQ ‑ Interrupt Request et FIQ ‑ Fast Interrupt Request)
— Les interruptions logicielles ou systèmes (SVC ‑ Supervisor Call, SMC ‑ Secure Monitor Call, etc.)

CPU

So
ur

ce
s d

'in
te

rr
up

tio
ns(Reset)

Undefined

System (SVC, SMC, ...)

Prefetch Abort

Data Abort

GIC
Interruptions

matérielles
IRQ

FIQ

Vecteur

[0]

Table des vecteurs

[1]

[..]

[..]

[..]

[n-1]

FiGURE 6.16 – Profil A ‑ Sources d’interruptions

De ces 7 sources, l’exception “Reset” est traitée généralement par unmicro‑code brûlé dans une ROM
du processeur, rendant impossible l’exécution de traitements spécifiques lors de la levée de cette ex‑
ception. Ce n’est que lors du lancement de l’application logicielle que ceux‑ci peuvent être exécutés.
Ne disposant que de deux lignes de requêtes d’interruptionsmatérielles, le CPU utilise un contrôleur
d’interruptions (GIC ‑ Generic Interrupt Controller) pour gérer les requêtes des périphériques internes
et externes et les relayer vers le CPU. Le μP TI AM3358 2, un μP ARM Cortex‑A8 3, implémente quant à
lui un “INTC” comme contrôleur d’interruptions.

6.3.2 Table des vecteurs d’interruptions

L’implémentationde la table des vecteurs est assez simple si l’onutilise le langage assembleur. Il suffit
de définir une table avec l’instruction pour appeler les routines de traitement de bas niveau (les hand‑
lers). Onprendra soin àn’utiliser que l’instruction “b” et nonpas “bl”. Il est eneffet essentiel denepas
“écraser” le contenu du registre “LR” contenant l’adresse de retour vers le programme suspendu.

1 .text

1. ARM Architecture Reference Manual ARMv7‑A and ARMv7‑R edition
2. AM335x Sitara(TM) Processors Technical Reference Manual
3. Cortex‑A8 Technical Reference Manual

Jacques Supcik, Daniel Gachet, Luca Haab 15

https://developer.arm.com/documentation/ddi0406/cd
https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf
https://developer.arm.com/documentation/ddi0344/k/

HEIA‑FR Architecture des Ordinateurs

2 .align 5
3 vector_table:
4 1: b 1b // reset
5 b undef_handler
6 b svc_handler
7 b prefetch_handler
8 b data_handler
9 1: b 1b // reserved

10 b irq_handler
11 b fiq_handler

La source “reset” étant traité par le μP et la source “reserved” n’étant pas jamais levée, il n’est
pas nécessaire d’appeler une routine de traitement. Cependant, pour des raisons de fiabilité et de
robustesse du code, il faut éviter d’exécuter une autre routine si le μP appelle quand même l’une de
ces sources. Pour cela l’instruction “1: b 1b”, permet de forcer le CPU à boucler sur elle‑même.

Les μP ARM Cortex‑A8 permettent de placer la table des vecteurs d’interruptions librement en mé‑
moire. La seule contrainte est que celle‑ci doit être alignée sur 32 bytes (25). Le co‑processeur P15
dispose d’un registre pour spécifier l’adresse de base de cette table. Les deux instructions ci‑dessous
permettent de charger le registre avec cette adresse.

1 ldr r0, =vector_table
2 mcr p15, #0, r0, c12, c0, #0

Il est impératif d’effectuer ce placement avant d’autoriser la levée d’interruptions.

6.3.3 Traitement de l’interruption par le CPU

Durant la deuxième étape du traitement des interruptions par le μP, le CPU sauve un état minimal
afin de pouvoir appeler une routine de traitement des interruptions de bas niveau pour permettre le
retour au programme en cours avant la levée de l’interruption.

Sauvegarde de l’état minimal du CPU

Lorsqu’une interruption est levée et que son traitement est autorisé, le CPU effectue les opérations
suivantes :

— Suspend l’exécution du programme en cours
— Détermine la source d’interruption
— Fixe le nouveaumode du processeur
— Sauve le compteur ordinal (PC), l’adresse de retour et le registre d’état (CPSR)
— Désactive la levée des interruptions matérielles

16 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

Pour des raisons de performances, le CPU sauve son étatminimal dans des registres supplémentaires
(Banked Registers). Ces registres sont déterminés par le nouveaumode du CPU (figure 6.17). L’adresse
de retour est sauvée dans le registre LR_<mode> et le CPSR dans le registre SPSR_<mode>.

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 / SP

R14 / LR

R15 / PC

CPSR

LR_svc

SP_svc

SPSR_svc

LR_irq

SP_irq

SPSR_irq

LR_und

SP_und

SPSR_und

LR_abt

SP_abt

SPSR_abt

LR_fiq

SP_fiq

SPSR_fiq

R12_fiq

R11_fiq

R10_fiq

R9_fiq

R8_fiq Banked Registers

User & System
Registers

FiGURE 6.17 – Profil A ‑ Sauvegarde de l’état minimal du CPU

Le nouveau mode du CPU se reflète dans le champ de bits M[4 :0] du registre CPSR (figure 6.18). La
désactivation des interruptions matérielles, également reflétées dans le registre CPSR, dépend de la
source d’interruption. La levée d’interruptions IRQ est toujours désactivée (bit I = 1), ceci indépen‑
damment de la source d’interruption (interruption matérielle, interruption logicielle ou exception).
Par contre, les interruptions FIQ ne sont désactivées (bit F = 1) que lors de la levée d’une interruption
matérielle FIQ.

E

31 30 29 28 24 23 16 15 8 7 027 26 20 19

N Z C V IT[1:0] IT[7:2] Mode[4:0]Q GE[3:0]CPSR J

25 6 5 4

TFIA

910

FiGURE 6.18 – Profil A ‑ Registre d’état

Jacques Supcik, Daniel Gachet, Luca Haab 17

HEIA‑FR Architecture des Ordinateurs

Appel de la routine de traitement de bas niveau

La sauvegarde de l’état minimal du CPU terminée, le CPU appelle la routine de traitement correspon‑
dant à la source d’interruption en exécutant l’instruction contenue dans la table des vecteurs. Cette
opération s’effectue en chargeant le registre “PC” avec l’adresse de la table des vecteurs corrigée avec
l’offset correspondant au numéro du vecteur d’interruption.

1 PC = &vector_table[vector_number];

Sortie de la routine de traitement d’interruption

Pour sortir de la routine de traitement et poursuivre l’exécution du programme, le CPU restaure le
contenu du registre “CPSR” et charge l’adresse de retour contenue dans le registre “LR” dans le re‑
gistre “PC”. L’instruction ci‑dessous en principe suffit :

1 movs pc, lr

 Source O�set Instruction de retour

 Reset n/a n/a

 Undefined 0 movs pc, lr

 SVC 0 movs pc, lr

 Prefetch Abort 4 subs pc, lr, #4

 Data Abort 4 subs pc, lr, #4

 IRQ 4 subs pc, lr, #4

 FIQ 4 subs pc, lr, #4

FiGURE 6.19 – Profil A ‑ Correction de l’adresse de retour

Cependant, selon la source d’interruption, l’adresse contenue dans le registre “LR” doit être préala‑
blement corrigée (figure6.19). Cetteoffset est une reliquedespremières implémentationsdesμPARM.
La troisième colonne de la table ci‑dessus propose une instruction de retour avec cet ajustement.

6.3.4 Traitement de l’interruption par le logiciel

Durant la deuxième phase du traitement par le logiciel, la routine de traitement sauve le contexte du
programme interrompu, les registres pas sauvés par le CPU, avant d’appeler la routine de traitement
appropriée à la source d’interruption. Le traitement terminé, elle restaure le contexte et retourne au
programme suspendu.

18 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

Le peusdo‑code ci‑dessous indique les opérations à effectuer.

1 sub lr, #OFFSET // only if necessary
2 stmfd sp!, {r0-r3,r12,lr} // save the context
3 mov r0, #VECTOR_NR // indicate vector number (source)
4 bl interrupt_handler // process interrupt
5 ldmfd sp!, {r0-r3,r12,pc}^ // restore the context

Une technique courante avant la sauvegarde du contexte du programme en cours consiste à corriger
l’adresse de retour contenue dans le registre “LR” (1re instruction) à l’entrée de la routine d’interrup‑
tion et de la sauver avec les autres registres (2e instruction). La valeur de la constante “OFFSET” est
spécifique à la source d’interruption.

Sur ce type de μP, processeur d’application, l’appel des routines de traitement des interruptions s’ef‑
fectue généralement par “callback” en réalisant le concept d’écouteur (Listener). Alors pour des rai‑
sons de confort de réalisation, juste les instructions n’existant pas en langage de programmation
évolué sont effectuées en assembleur. Le reste du traitement est délégué à la fonction générique
“interrupt_handler” (4e instruction). Cette routine sert d’intermédiaire à l’appel de la routine
de traitement spécifique à la source de l’interruption au niveau applicatif. Elle reçoit en paramètre
l’indication sur la source d’interruption, le numéro de vecteur “VECTOR_NR” (3e instruction).

La restauration du contexte du CPU à la sortie de la routine de traitement d’interruption s’effectue en
une seule opération (5e instruction). L’utilisation du “^” avec le registre “PC” indique auCPUqu’il doit
restaurer le “CPSR” depuis le “SPSR”.

Utilisation d’unemacro

L’utilisation d’une macro permet d’adapter simplement ce code aux différentes sources d’interrup‑
tions.

1 .macro ll_interrupt_handler offset, vector_nr
2 nop
3 .if \offset != 0 // adjust return address
4 sub lr, #\offset // only if necessary
5 .endif
6 stmfd sp!, {r0-r3,r12,lr} // save the context
7 mov r0, #\vector_nr // indicate vector number (source)
8 bl interrupt_handler // process interrupt
9 ldmfd sp!, {r0-r3,r12,pc}^ // restore the context

10 .endm

Avec cette macro, les routines de traitement de bas niveau appelées depuis la table des vecteurs se
définissent comme suit :

1 .text

Jacques Supcik, Daniel Gachet, Luca Haab 19

HEIA‑FR Architecture des Ordinateurs

2 .align 2
3 undef_handler: ll_interrupt_handler 0, INT_UNDEF
4 svc_handler: ll_interrupt_handler 0, INT_SWI
5 prefetch_handler: ll_interrupt_handler 4, INT_PREFETCH
6 data_handler: ll_interrupt_handler 4, INT_DATA
7 irq_handler: ll_interrupt_handler 4, INT_IRQ
8 fiq_handler: ll_interrupt_handler 4, INT_FIQ

La valeur du numéro de vecteur passé en 2e paramètre doit bien évidemment correspondre celle uti‑
lisée par la fonction “interrupt_handler” réalisée en langage évolué.

Pointeurs de piles

Chaquemode du processeur possède sa propre pile (figure 6.18). Cette pile, accessible par le registre
“SP” du mode correspondant doit être initialisée impérativement avant la levée d’interruption ou
d’une exception. Cette opérationpassepar la créationd’unepile en réservant une zonemémoire dans
la mémoire vive et ensuite par l’assignation du registre “SP” avec l’adresse la plus haute de la pile.

Le code ci‑dessous donne un exemple d’implémentation pour l’un desmodes du processeur, lemode
IRQ.

1 .bss
2 .align 4
3 irq_s: .space 0x2000 // reserve stack of the irq mode
4 IRQ_STACK_TOP: // points to the top of the stack
5
6 .text
7 .align 2
8 msr cpsr_c, #0xd2 // switch to irq mode
9 ldr sp, =IRQ_STACK_TOP // init SP with top stack address

Dans l’exemple ci‑dessus, la réservation de la pile est statique. Il est bien évidemment possible de la
réserver dynamiquement.

6.3.5 Principe pour le traitement des interruptionsmatérielles

La signalisation d’événements par des périphériques d’entrées/sorties passe par plusieurs multi‑
plexeurs avant d’arriver sur l’une des lignes d’interruptions du CPU. Cesmultiplexeurs permettent de
connecter une grande quantité de périphériques au CPU. Ils sont également en charge d’arbitrer, de
prioriser et d’identifier efficacement les périphériques ayant levé une interruption. Comme présenté
sur la figure ci‑dessous (figure 6.20), les μP Cortex‑A8 implémentent deux multiplexeurs, un contrô‑
leur d’interruption (INTC ‑ Interrupt Controller) et une unité de gestion des broches d’entrées/sorties
(GPIO ‑ General Purpose Input Output).

20 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

E/S
Externe GPIO

E/S
Internes

INTC CPU

Vecteur

[0]

Table des vecteurs

Externe au µP Interne au µP

Broche

[1]

[..]

[..]

[..]

[n-1]

FIQ

IRQ

FiGURE 6.20 – Profil A ‑ Connexion des périphériques au CPU

L’INTC est connecté directement au CPU. Sa fonction est de multiplexer toutes les lignes d’interrup‑
tions des périphériques internes du μP vers le système d’interruptions du CPU. L’INTC permet d’arbi‑
trer et de prioriser les différentes requêtes. Pour faciliter le traitement des requêtes par le logiciel, il
livre un numéro de vecteur d’interruption permettant d’identifier très efficacement la source d’inter‑
ruption. Ce numéro est unique à chaque périphérique. L’INTC permet de connecter jusqu’à 128 lignes
de requêtes d’interruptions.

Le GPIO, hormis sa fonction de contrôleur d’entrées/sorties numériques, permet, par ses broches, de
connecter au système d’interruptions du CPU des périphériques externes d’entrées/sorties. Le GPIO
n’offre aucun support pour identifier la source d’interruption. Il ne livre dans un registre qu’un set de
bits indiquant quelles broches ont levé une interruption. C’est ensuite au logiciel de scruter chaque
bit pour identifier la broche à servir et à quittancer après traitement.

Pour trouver la source lors d’une interruption, le CPU appelle juste la routine de traitement d’inter‑
ruption de bas niveau (interrupt handler) contenue dans sa table des vecteurs et correspondant à la
source de l’interruption. Il délègue le reste du traitement au logiciel (figure 6.21).

La routine de traitement d’interruption (intc handler) traite les interruptions matérielles (IRQ et/ou
FIQ) levées par le contrôleur INTC. Pour identifier le périphérique interne du μP ayant levé l’interrup‑
tion, elle demande au contrôleur INTC de lui livrer le vecteur d’interruption pour appeler la routine de
traitement correspondant au périphérique. Si le vecteur correspond à un contrôleur GPIO, la routine
de traitement du contrôleur (gpio handler) demande alors au contrôleur GPIO de lui livrer la broche
à l’origine de l’interruption, pour appeler la routine de traitement au niveau de l’application (applica‑
tion e/s externe) et effectuer le traitement souhaité.

6.3.6 Gestion de la levée d’interruptions

La gestion de la levée des interruptions au niveau du CPUpar le logiciel passe par lamanipulation des
fanions “I” et “F” du registre “CPSR”. Le fanion “I” gère la levée des interruptions provenant de la
ligne d’interruptions IRQ, tandis que le fanion “F” celle des FIQ.

Jacques Supcik, Daniel Gachet, Luca Haab 21

HEIA‑FR Architecture des Ordinateurs

E/S
Externe

GPIO

E/S
Interne

INTC

CPU

Table
Vecteurs

HW SW

interrupt
handler

intc
handler

gpio
handler

application
e/s interne

application
e/s externe

FiGURE 6.21 – Profil A ‑ Pyramide de traitement des interruptions

Pour bloquer la levée d’interruptions, les fanions doivent être mis à 1

1 mrs r0, cpsr
2 orr r0, #0xe0
3 msr cpsr, r0

par contre, s’ils sont mis à zéro, la levée d’interruptions est autorisée.

1 mrs r0, cpsr
2 bic r0, #0xe0
3 msr cpsr, r0

Le CPU n’autorise lamanipulation de ces fanions que si le programme s’exécute enmode privilégié.

Pour rappel, lorsqu’une interruption matérielle est levée, le CPU change de mode et
sauve son état dans les registres “LR” et “SPSR”, puis il bloque la levée de futures inter‑
ruptions enmanipulant les fanions “I” et “F”

— Si une IRQ est levée, alors “I” est mis à 1 et “F” reste inchangé
— Si une FIQ est levée, alors “I” et “F” sont mis à 1

6.3.7 Priorité et préemption

La notion depriorité des interruptions et exceptions prend tout son sens lorsque celles‑ci surviennent
simultanément. Les μP du profil A les classent sur 7 niveaux (figure 6.22). Le niveau 1 est le plus prio‑

22 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

ritaire et le niveau 7 le moins.

 Priorité # Description

la plus haute 1 Reset

2 Data abort

3 FIQ

4 IRQ

5 Imprecise abort

6 Prefetch abort

la plus basse 7 Undefined instruction / SVC / BKPT

FiGURE 6.22 – Profil A ‑ Priorités des interruptions

Si plusieurs événements sont levés exactement au même instant, le CPU les traite séquentiellement
en commençant par le plus prioritaire. Lors de la levée simultanée d’interruptionsmatérielles par des
périphériques, le contrôleur d’interruptions (INTC) se charge de les prioriser et de les relayer au CPU
par les lignes de requêtes IRQ et FIQ.

L’infrastructure des μP de ce profil permet une gestion imbriquée des interruptions et exceptions. Ce‑
pendant, il est peu courant que les systèmes d’exploitation riches en profitent. La préférence est sou‑
vent donnée à une gestion minimale dans les routines de traitement pour déléguer l’essentiel de la
gestion de l’événement à des tâches de fond (Thread) et éviter ainsi un traitement préemptif.

6.3.8 Contrôleur d’interruptions

Le contrôleur d’interruptions INTC multiplexe 128 sources d’interruptions. Chacune de ces sources
correspondàune lignede requêtesd’interruptionsd’unpériphérique interneauprocesseur. Il dispose
de registres pour prioriser (Priority) et bloquer (Mask) chaque ligne de requêtes d’interruptions, ainsi
que pour simuler (Software Interrupt) par logiciel la levée d’une interruption (figure 6.23).

Lorsque des interruptions sont levées, le contrôleur sélectionne, grâce à son unité pour trier les priori‑
tés (Priority Sorter), la source (Source) la plus prioritaire et la sert en premier. Une fois servie, le logiciel
quittance le traitement par le registre de contrôle (Control), permettant ainsi la levée de la prochaine
source. Si aucune priorité n’a été attribuée par logiciel, le contrôleur utilise le numéro de la source.

Le contrôleur INTCdisposeégalementd’une logiquepourneprendreencompteque les sourcesayant
un niveau de priorité suffisant pour être traitées. Si le niveau de priorité de la source d’interruption
est inférieur ou égal à une valeur prédéfinie (Threshold), la requête sera bloquée jusqu’à ce que le
threshold soit ajusté (figure 6.24).

Jacques Supcik, Daniel Gachet, Luca Haab 23

HEIA‑FR Architecture des Ordinateurs

Priority
Sorter

Control

Source
Priority

Threshold

Threshold

Priority

So�ware Interrupt

Mask

>

IRQ

FIQ

I/O Device

IRQ-Line
128

FiGURE 6.23 – Profil A ‑ INTC

Source Priority Level

√ √ √ √ √ √ √

x
x
x

Th
re

sh
ol

d

0 1 2 3 ... 62 63
0x�

0
1
2

x3
x...
x62
x63

√ √ √ √ √ √

x √ √ √ √ √

x x √ √ √ √

x x x √ √ √

x x x x √ √

x x x x x √

x x x x x x

U
na

cc
ep

te
d

in
te

rr
up

ts
Ac

ce
pt

ed

in
te

rr
up

ts

Cu
rr

en
t T

hr
es

ho
ld

FiGURE 6.24 – Profil A ‑ Niveaux de priorités de l’INTC

24 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

Bien que disponible, cette fonctionnalité permettant de réaliser un système de traitement des inter‑
ruptions imbriquées n’est généralement pas utilisée par les systèmes d’exploitation riches. Ceux‑ci
préfèrent un traitement rapide en mode interruptif pour déléguer la plus grande portion du traite‑
ment dans des tâches de fond.

6.3.9 Unité de gestion des entrées/sorties

L’unité de gestion des entrées/sorties (GPIO ‑ General Purpose Input Output) sert à piloter 32 broches
(Pin) numériques (figure 6.25). Chaque broche peut se configurer aussi bien en entrée qu’en sortie
(Output Enable).

Interrupt
Controller

Data Output

IRQ Status

IRQ Control

IRQ ModeIRQ_0

IRQ_1

Output Enable

Data Input I/O
 P

AD
 M

ux32
Pins

FiGURE 6.25 – Profil A ‑ GPIO

Configurés en entrée, des périphériques externes au μP, tels des boutons‑poussoirs, peuvent les uti‑
liser comme ligne de requêtes d’interruptions. Deux lignes de requêtes connectent l’unité GPIO au
contrôleur INTC, les lignes IRQ_0 et IRQ_1. Ces deux lignes permettent de prioriser certaines broches
par rapport à d’autres.

Chaque broche peut de générer une interruption si elle détecte (figure 6.26)

— Niveau haut du signal (High Level)
— Niveau bas du signal (Low Level)
— Flanc descendant (Falling Edge)
— Flanc montant (Rising Edge)

Bien qu’il soit possible de générer une interruption selon le niveaudu signal, on préfère généralement
la détection sur les changements d’état, sur les flancs montants, descendants ou les deux.

Lors de la levée d’une interruption sur une broche, l’unité GPIO la propage vers le contrôleur INTC.
Afin que cette interruption atteigne le CPU, il faut encore autoriser la levée d’interruptions du contrô‑
leur INTC. Hormis la liste des broches ayant levé une interruption, l’unité GPIO ne fournit pas d’autres

Jacques Supcik, Daniel Gachet, Luca Haab 25

HEIA‑FR Architecture des Ordinateurs

1

0

High Level

Low Level
Rising EdgeFalling Edge

FiGURE 6.26 – Profil A ‑ GPIO Système de détections

indications. C’est au logiciel d’itérer sur les différentes broches pour identifier celles ayant levé une
interruption et la servir.

6.4 Profil M

Les processeurs du profil M implémentent une gestion des interruptions au niveau du CPU permet‑
tant un traitement logiciel réalisé en langage C/C++. Sur ces μP, il n’est pas nécessaire de réaliser des
routines de bas niveau en assembleur. Le CPU se charge de sauvegarder le contexte du programme
en cours avant d’appeler la routine de traitement de l’événement et de le restaurer après traitement.
Ce choix simplifie énormément la réalisation des applications logicielles.

Les exemples de ce chapitre se basent sur le processeur ARM Cortex‑M4F et plus spécia‑
lement le μC de ST STM32F412 et utilisent la bibliothèque “libopencm3” sous l’envi‑
ronnement “platformio”.

6.4.1 Sources d’interruptions

Les μC du profil M connaissent 15 sources d’interruptions internes et de multiples sources d’inter‑
ruptions externes (figure 6.27). Toutes ces sources d’interruptions sont connectées et gérées par le
contrôleur d’interruptions (NVIC ‑ Nested Vectored Interrupt Controller).

Sur les 15 sources internes, 10 sont actuellement allouées 4 :

— Reset : l’exception est levée lorsque le μC est mis sous tension ou lors d’un reset local du μC
par logiciel. Elle génère la réinitialisation du CPU et de ses périphériques.

— NMI : l’interruption (Non‑Maskable Interrupt) est l’interruption la plus élevée après le reset et
ne peut pas être bloquée. Elle sert généralement à des composantsmatériels pour signaler des
erreurs exigeant un traitement immédiat ne pouvant être retardé.

4. Armv7‑M Architecture Reference Manual ‑ chapitre B1.5

26 Jacques Supcik, Daniel Gachet, Luca Haab

https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/armv7-m_reference-manual.pdf

Architecture des Ordinateurs HEIA‑FR

E/S
Externe EXTI

E/S
Interne

NVIC CPU

MSP

Vecteur

...

...

...

[0]

[1]

[2]

[..]

[n-1]

Table des vecteurs

...

Externe au µP Interne au µP

Broche

 Exceptions

Système

E/S
Interne

SysTick
Timer

IRQ

NMI

FiGURE 6.27 – Profil M ‑ Système d’Interruptions

— HardFault : l’exception signale des fautes génériques ne trouvant aucune autre exception of‑
frantun traitementpermettantde récupérer la situationd’erreur. Elle est généralement le résul‑
tat d’un enchaînement de fautes, dues à unnon‑traitement d’autres fautes, tellesMemManage,
BusFault ou UsageFault.

— MemManage : l’exception signale une violation de la protection de lamémoire détectée par la
MPU (Memory Protection Unit).

— BusFault : l’exception signale des erreurs lors de transfert de données ou d’instructions sur les
bus système.

— UsageFault : l’exception signale des erreurs causées par l’exécution d’instructions, mais non
liées à la mémoire, par exemple des instructions non définies, des accès non alignés, des divi‑
sions par zéro, des accès à des coprocesseurs non existants ou déclenchés, etc.

— DebugMonitor : l’exception signale des événements de debugging.
— SVCall : l’exception est levée suite l’appel de l’instruction “SVC”. Les systèmes d’exploitation

l’utilisent pour les appels système (syscall).
— PendSV : l’exception (Pendable ServiceCall) est levéepar logiciel pourdes appels systèmeasyn‑

chrones.
— SysTick :l’interruption est levée par l’horloge interne au μC. Les systèmes d’exploitation l’uti‑

lisent pour générer l’horloge système.

Le contrôleur NVIC est capable en principe de gérer jusqu’à 496 sources d’interruptions externes. Ce‑
pendant le nombre exact de sources dépend de la réalisation spécifique du fabricant du μC.

6.4.2 Table des vecteurs d’interruptions

La conception de la table des vecteurs est très simple à utiliser avec le langage C/C++. Elle contient
l’adresse initiale du pointeur de pile “MSP” (Main Stack Pointer) ainsi que les adresses des routines de
traitementdes interruptions.Comme lemontre lepointeurde fonction“vector_table_entry_t”,

Jacques Supcik, Daniel Gachet, Luca Haab 27

HEIA‑FR Architecture des Ordinateurs

ces routines sont des fonctions sans paramètre ni valeur de retour.

1 #define NVIC_IRQ_COUNT 96
2
3 typedef void (*vector_table_entry_t)(void);
4
5 typedef struct { // vector number
6 unsigned int *initial_sp_value; // MSP
7 vector_table_entry_t reset; // 1
8 vector_table_entry_t nmi; // 2
9 vector_table_entry_t hard_fault; // 3

10 vector_table_entry_t memory_manage_fault; // 4
11 vector_table_entry_t bus_fault; // 5
12 vector_table_entry_t usage_fault; // 6
13 vector_table_entry_t reserved_x001c[4]; // (7-10)
14 vector_table_entry_t sv_call; // 11
15 vector_table_entry_t debug_monitor; // 12
16 vector_table_entry_t reserved_x0034; //(13)
17 vector_table_entry_t pend_sv; // 14
18 vector_table_entry_t systick; // 15
19 vector_table_entry_t irq[NVIC_IRQ_COUNT];
20 } vector_table_t;
21
22 __attribute__ ((section(".vectors"))) vector_table_t vector_table={};

La table des vecteurs (vector_table) peut être placée librement dans la mémoire SRAM ou Flash
(Code) du processeur à l’aide du registre “VTOR” contenu dans le bloc de contrôle du système (SCB ‑
System Control Block) 5. Par défaut et grâce à la section “.vectors”, l’éditeur de liens (Linker) place
la table des vecteurs dans les premiers blocs de la Flash à l’offset 0.

Avec la bibliothèque “libopencm3”, cette table est initialisée dans le module “vector.c”. Quant
aux routines de traitement par défaut, elles sont définies dans le fichier “nvic.h” de la famille du
μC. Pour attacher une routine spécifique à l’application (ISR ‑ Interrupt Service Routine) au système
de traitement des interruptions, il suffit de surcharger la routine par défaut en implémentant une
routine correspondante. Celle‑ci doit respecter le nom par défaut, par exemple pour le “timer 2” la
routine doit impérativement être nommée “void tim2_isr(void)”. Son numéro de vecteur est
“NVIC_TIM2_IRQ”.

Au démarrage, le processeur initialise le registre “MSP” avec la valeur de la première entrée de la table
des vecteurs (initial_sp_value). Cette valeur initiale est générée par l’éditeur de lien et pointe sur le
sommet de la SRAM (adresse la plus haute). Le processeur exécute ensuite la routine attachée à la
source “Reset”.

5. STM32 Cortex®‑M4 MCUs and MPUs programmingmanual (PM0214) ‑ chapitre 4.4

28 Jacques Supcik, Daniel Gachet, Luca Haab

https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/stm32-cortexm4-programming-manual.pdf

Architecture des Ordinateurs HEIA‑FR

6.4.3 Traitement de l’interruption par le CPU

Lors de la levée d’une interruption autorisée, c’est‑à‑dire une interruption ayant une priorité suffi‑
sante, le CPU sauve le contexte du programme en cours d’exécution avant d’appeler la routine de
traitement correspondante et de le restaurer une fois l’interruption servie. Cette technique décharge
le logiciel des opérations à effectuer au niveau du CPU et lui permet ainsi de s’occuper directement et
seulement du traitement de l’événement (figure 6.28).

E/S
Externe

EXTI

E/S
Interne

NVIC

CPU

Table
Vecteurs

HW SW

application
e/s interne

application
e/s externe

FiGURE 6.28 – Profil M ‑ Traitement des interruptions

Pour sauver le contexte, le CPU bascule dans le mode “Thread”. Il sauve ensuite les registres qui ne
sont pas sauvés lors de l’appel de fonction (Scratch Registers), le registre de liens (LR ‑ Link Register),
l’adresse de retour (Return Address) ainsi que le registre de statut du programme (xPSR ‑ Program
StatusRegister) selon le standardAAPCS 6 (figure 6.29). Si nécessaire et afin de respecter la convention
d’alignement de la pile sur 8 octets, le CPU réserve unmot supplémentaire sur la pile.

Si le μC dispose d’une unité de calcul à virgule flottante (FPU ‑ Floating Point Unit), le CPU peut éga‑
lement sauver les registres de cette unité (figure 6.29). Cette sauvegarde ne s’effectue que si le CPU
est configuré pour l’effectuer. Cette configuration s’effectue via le registre “FPCCR” contenu dans les
registres de contrôle de la FPU 7.

Il charge ensuite dans le registre “LR” un code (figure 6.31) lui permettant de restaurer l’état du CPU
après traitement.

6. Arm Architecture Procedure Calling Standard
7. STM32 Cortex®‑M4 MCUs and MPUs programmingmanual (PM0214) ‑ chapitre 4.6

Jacques Supcik, Daniel Gachet, Luca Haab 29

https://ado.pages.forge.hefr.ch/documentation/assets/references/procedure_call_standard.pdf
https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/stm32-cortexm4-programming-manual.pdf

HEIA‑FR Architecture des Ordinateurs

R0

R1

R2

R3

R12

LR (R14)

Return Address

xPSR

Reserved

...

R0

R1

R2

R3

R12

LR (R14)

Return Address

xPSR

...

Offset

0x00

0x04

0x08

0x0c

0x10

0x14

0x18

0x1c

0x20

0x24
SP original

4 octets alignés

Nouveau SP,

8 octets alignés

SP original

8 octets alignés

Nouveau SP,

8 octets alignés

Contexte

de base

FiGURE 6.29 – Profil M ‑ Contexte

R0

R1

R2

R3

R12

LR (R14)

Return Address

xPSR

Reserved

...

R0

R1

R2

R3

R12

LR (R14)

Return Address

xPSR

...

Offset

0x00

0x04

0x08

0x0c

0x10

0x14

0x18

0x1c

0x20

0x24

SP original

4 octets alignés

Nouveau SP,

8 octets alignés

SP original

8 octets alignés

Nouveau SP,

8 octets alignés

Contexte

de base

S0

S1

S3 - S13

S14

S15

FPSCR

Reserved

0x58

0x5c

0x60

0x64

0x68

0x6c

S0

S1

S3 - S13

S14

S15

FPSCR

Reserved

Contexte

étendu

S2 S20x28

FiGURE 6.30 – Profil M ‑ Contexte étendu

ContexteCode Mode au retour Pile au retour

0xFFFF'FFE1

0xFFFF'FFE9

0xFFFF'FFED

0xFFFF'FFF1

0xFFFF'FFF9

0xFFFF'FFFD

Handler

Thread

Thread

Handler

Thread

Thread

Main (MSP)

Main (MSP)

Process (PSP)

Main (MSP)

Main (MSP)

Process (PSP)

étendu

étendu

étendu

de base

de base

de base

FiGURE 6.31 – Profil M ‑ Codes pour la restauration du contexte

30 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

6.4.4 Priorité et préemption

La notion depriorité des interruptions et exceptions prend tout son sens lorsque celles‑ci surviennent
simultanément. Les μC du profil M utilisent un système de priorité des événements où plus la valeur
de la priorité est faible, plus le niveau de priorité de l’événement est élevé (figure 6.32).

 No de vecteur No IRQ Priorité Description

 1 - -3 (la plus haute) Reset

 2 -14 -2 NMI

 3 -13 -1 Hard Fault

 4 -12 0 (configurable) Memory Management Fault

 5 -11 0 (configurable) Bus Fault

 6 -10 0 (configurable) Usage Fault

 11 -5 0 (configurable) SVCall

 14 -2 0 (configurable) PendSV

 15 -1 0 (configurable) SysTick

 16 et supérieur 0 et supérieur 0 (configurable) Interruptions externes (IRQ)

FiGURE 6.32 – Profil M ‑ Priorités des interruptions

Les sources internes “Reset”, “NMI” et “HardFault” s’exécutent avec des priorités fixes de ‑3, ‑2
et ‑1 respectivement. Le logiciel peut définir la priorité (valeur entre 0 et 255) pour toutes les autres
sources. La priorité des sources internes, sources avec un numéro IRQ négatif, se configure via les
registres “SHPR1”, “SHPR2” et “SHPR3” contenu dans le “SCB” 8, tandis que les sources externes se
configurent via les registres du contrôleur d’interruptions (NVIC ‑ Nested Vector Interrupt Controler) 9.
Le niveau de priorité d’une source se laisse configurer avec la fonction “nvic_set_priority” du
module “nvic.h”.

Le μC traite les exceptions ou interruptions séquentiellement selon leur priorité en débutant par la
plus prioritaire. Lorsque plusieurs événements se lèvent simultanément et ont la même priorité, ce‑
lui ayant le numéro le plus bas est prioritaire. Seul un événement avec une priorité plus élevée peut
le préempter. Afin d’affiner le contrôle des priorités et du système de préemption, chaque priorité
se compose de deux champs, un groupe de priorité et une sous‑priorité. Les bits de poids fort dé‑
finissent le groupe et les bits de poids faible la sous‑priorité. Le registre “AIRCR” contenu dans le
“SCB” permet de définir le nombre de bits déterminant la taille du groupe de priorité. La fonction

8. STM32 Cortex®‑M4 MCUs and MPUs programmingmanual (PM0214) ‑ chapitre 4.4
9. STM32 Cortex®‑M4 MCUs and MPUs programmingmanual (PM0214) ‑ chapitre 4.3

Jacques Supcik, Daniel Gachet, Luca Haab 31

https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/stm32-cortexm4-programming-manual.pdf
https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/stm32-cortexm4-programming-manual.pdf

HEIA‑FR Architecture des Ordinateurs

“scb_set_priority_grouping” du module “scb.h” permet de configurer la taille du groupe
de priorité.

Lors de la levéed’une interruptionoud’une exception, seul le groupedepriorité détermine la préemp‑
tion d’un traitement en cours. Si demultiples interruptions arrivent dans lemême groupe de priorité,
alors la sous‑priorité sert à la précédence du traitement.

6.4.5 Gestion de la levée des interruptions

Le logiciel peut gérer la levée des interruptions et d’exceptions au niveau du CPU sur trois niveaux
différents :

— Au premier niveau, le registre spécial “BASEPRI” permet au logiciel de restreindre la levée
d’interruptions aux sources ayant une priorité plus élevée qu’une certaine valeur.

1 movs r0, #0x80 // choix du niveau de priorité (p.ex. 0x80)
2 msr basepri, r0 // assignation du niveau

— Au deuxième niveau, le registre spécial “PRIMASK” permet au logiciel de bloquer la levée de
toutes les interruptions ayant un niveau de priorité inférieur ou égal à 0.

1 cpsid i // désactivation
2 cpsie i // autorisation

— Au troisième niveau, le registre spécial “FAULTMASK” permet au logiciel de désactiver la le‑
vée de toutes les interruptions ayant un niveau de priorité inférieur ou égal à ‑1.

1 cpsid f // désactivation
2 cpsie f // autorisation

Les fonctions“cm_enable_interrupts”, “cm_disable_interrupts”, “cm_enable_faults”
et “cm_disable_faults” dumodule “cortex.h"” permettent de gérer l’activation et le blocage
des interruptions au niveau du CPU.

6.4.6 Contrôleur d’interruptions

Le contrôleur d’interruptions NVIC est capable de multiplexer, selon les réalisations, jusqu’à 496
sources d’interruptions. Le registre “ICTR” contenu dans l’espace de contrôle du système (SCS ‑
System Control Space) 10 indique le nombre spécifique à l’implémentation déployée sur le μC. Cha‑
cune de ces sources correspond à une ligne de requêtes d’interruptions d’un périphérique interne au
processeur.

10. Armv7‑M Architecture Reference Manual ‑ chapitre B3.2

32 Jacques Supcik, Daniel Gachet, Luca Haab

https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/armv7-m_reference-manual.pdf

Architecture des Ordinateurs HEIA‑FR

Pour gérer les requêtes de ces sources, le NVIC dispose de six sets de registres 11. Lemodule “nvic.h”
de la bibliothèque “libopencm3” offre des fonctions pour manipuler ces registres.

— “ISER” (Interrupt Set‑Enable Registers), ce registre permet d’autoriser la levée d’interruptions
pour les différentes lignes de requêtes (fonction “nvic_enable_irq”).

— “ICER” (Interrupt Clear‑Enable Registers), ce registre permet de bloquer la levée d’interrup‑
tions pour les différentes lignes de requêtes (fonction “nvic_disable_irq”).

— “ISPR” (Interrupt Set‑Pending Registers), ce registre indique si une ou plusieurs interruptions
sont en attente de traitement. Il permet également de générer, de simuler, par logiciel, la levée
d’interruptions pour les lignes de requêtes données (fonctions “nvic_get_pending_irq”
et “nvic_set_pending_irq”).

— “ICPR” (Interrupt Clear‑Pending Registers), ce registre permet de quittancer une requête en
attente pour les différentes lignes de requêtes (fonction “nvic_clear_pending_irq”).

— “IABR” (Interrupt Active Bit Registers), ce registre indique si la requête d’une source d’interrup‑
tion est en cours de traitement (fonction “nvic_get_active_irq”).

— “IPR” (Interrupt Priority Registers), ce registre permet de configurer la priorité de la ligne de
requêtes donnée lors de la levée d’interruptions (fonction “nvic_set_priority”).

Le registre “STIR” contenu dans le SCS permet également de générer, de simuler, la levée d’inter‑
ruption pour une source donnée (fonction “nvic_generate_software_interrupt”). La levée
d’interruptions n’est possible que si les requêtes pour une ligne d’interruptions donnée ont préalable‑
ment été autorisées.

6.4.7 Unité de gestion des entrées/sorties

L’unité de gestion des entrées/sorties (GPIO ‑ General Purpose Input Output) sert à piloter 16 broches
(Pin) numériques. En utilisant les fonctions du module “gpio.h”, chaque broche peut se configurer
aussi bien en entrée qu’en sortie.

Configurés en entrée, des périphériques externes au μP, tels des boutons‑poussoirs, peuvent les
utiliser comme ligne de requêtes d’interruptions via le contrôleur EXTI (External Interrupt/Event
Controller). Ce contrôleur multiplexe 8 GPIO (figure 6.33). La broche servant de ligne de requête est
choisie par les registres “syscfg_exticr1” à “syscfg_exticr4” ou en utilisant la fonction
“exti_select_source” dumodule “exti.h”.

Chaque broche peut de générer une interruption si elle détecte (figure 6.34)

— Flanc descendant (Falling Edge)
— Flanc montant (Rising Edge)

La fonction “exti_set_trigger” dumodule “exti.h” sert à configurer le trigger.
11. Armv7‑M Architecture Reference Manual ‑ chapitre B3.4

Jacques Supcik, Daniel Gachet, Luca Haab 33

https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/armv7-m_reference-manual.pdf

HEIA‑FR Architecture des Ordinateurs

GPIOAx
Broche

IRQ-Line

GPIOHx
Broche

EX
TI
x

FiGURE 6.33 – Profil M ‑ EXTI

1

0

Rising EdgeFalling Edge

FiGURE 6.34 – Profil M ‑ EXTI Système de détections

Lors de la levée d’une interruption sur une broche, l’unité EXTI la propage vers le contrôleur NVIC. Afin
que cette interruption atteigne le CPU, il faut premièrement l’autoriser sur le contrôleur EXTI ainsi que
sur le contrôleur NVIC. Les fonctions “exti_enable_request” et “exti_disable_request”
permettent gérer la levée d’interruption sur le contrôleur EXTI.

La levée d’une interruption externe doit être quittancée sans quoi elle reste active. Ce quittancement
doit s’effectuer durant le traitement de l’interruption avec la fonction “exti_reset_request” du
module “exti.h”.

6.5 Exercices

Quelques exercices pour assimiler la matière de ce chapitre.

6.5.1 Exercice 1 : Concept général

Décrivez succinctement le concept général d’une interruption, d’exception et de leur traitement.

34 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA‑FR

6.5.2 Exercice 2 : Types d’événements

Citez les types d’événements pouvant survenir sur un système à μP.
Décrivez succinctement la différence entre des événements ou interruptions synchrones et asyn‑
chrones.

6.5.3 Exercice 3 : Séquence d’interruption

Citez les 4 étapes principales du traitement d’une interruption.

6.5.4 Exercice 4 : Table des vecteurs d’interruptions

Décrivez la fonction de la table des vecteurs d’interruptions.
Indiquez son contenu.

6.5.5 Exercice 5 : Commutation de contexte

Expliquez la commutation de contexte d’interruption.
Décrivez la latence d’interruptions.
Décrivez la gigue d’interruptions et donnez quelques exemples.

6.5.6 Exercice 6 : Interruptions imbriquées

Décrivez le principe d’interruptions imbriquées.

6.5.7 Exercice 7 : Section critique

Quel est le résultat de l’instruction ci‑dessous si durant l’exécution de l’instruction une interruption
matérielle est levée et appelle la fonction “irq_handler”?

1 int len = 0;
2
3 len += 2; // <-- irq_handler() est appelée durant l'exécution
4
5 void irq_handler(void)
6 {
7 len += 4;
8 }

Jacques Supcik, Daniel Gachet, Luca Haab 35

HEIA‑FR Architecture des Ordinateurs

6.5.8 Exercice 8 : Interruptionsmatérielles

Citez les 3 techniques pour connecter des périphériques d’entrées/sorties à un processeur pour un
traitement interruptif.

6.5.9 Exercice 9 : Génération d’exceptions

Imaginez des petits codes permettant de générer les exceptions suivantes :

— Une interruption logicielle
— Une instruction non définie
— Une exception “data abort”
— Une exception “prefetch abort”

Indiquez pour chacune de ces exceptions le numéro de vecteur pour un μC du profil M.

6.5.10 Exercice 10 : Gestion de la levée d’interruptions

Implémentez en assembleur les deux fonctions ci‑dessous permettant de bloquer et d’autoriser les
interruptions au niveau du CPU. Réalisez ces fonctions pour les μC du profil M.

1 void interrupt_enable(void);
2 void interrupt_disable(void);

6.5.11 Exercice 11 : Priorité d’interruptions

Démontez à l’aide de “timers” la priorité d’interruptions et la préemption.

6.5.12 Exercice 12 : Traitement d’un bouton‑poussoir par interruption

Détectez les changements d’état d’un bouton‑poussoir à l’aide d’interruptions.

36 Jacques Supcik, Daniel Gachet, Luca Haab

	Traitement des interruptions
	Concept général
	Types d'événements
	Séquence d'interruption
	Table des vecteurs d'interruptions
	Commutation de contexte
	Interruptions imbriquées
	Gestion de la levée des interruptions

	Interruptions matérielles
	Scrutation logicielle
	Priorité d'interruption
	Interruption vectorisée

	Profil A
	Sources d'interruptions
	Table des vecteurs d'interruptions
	Traitement de l'interruption par le CPU
	Traitement de l'interruption par le logiciel
	Principe pour le traitement des interruptions matérielles
	Gestion de la levée d'interruptions
	Priorité et préemption
	Contrôleur d'interruptions
	Unité de gestion des entrées/sorties

	Profil M
	Sources d'interruptions
	Table des vecteurs d'interruptions
	Traitement de l'interruption par le CPU
	Priorité et préemption
	Gestion de la levée des interruptions
	Contrôleur d'interruptions
	Unité de gestion des entrées/sorties

	Exercices
	Exercice 1 : Concept général
	Exercice 2 : Types d'événements
	Exercice 3 : Séquence d'interruption
	Exercice 4 : Table des vecteurs d'interruptions
	Exercice 5 : Commutation de contexte
	Exercice 6 : Interruptions imbriquées
	Exercice 7 : Section critique
	Exercice 8 : Interruptions matérielles
	Exercice 9 : Génération d'exceptions
	Exercice 10 : Gestion de la levée d'interruptions
	Exercice 11 : Priorité d'interruptions
	Exercice 12 : Traitement d'un bouton-poussoir par interruption

