Architecture des
Ordinateurs

Chapitre 6 : Traitement des interruptions

Jacques Supcik, Daniel Gachet, Luca Haab

2021-12-22

Table des matieres

6 Traitement des interruptions 1
6.1 Conceptgénéral

6.1.1 Typesdévénements e 2

6.1.2 Séquenced’interruption. 5

6.1.3 Tabledesvecteursd’interruptions, 6

6.1.4 Commutationdecontexte 7

6.1.5 Interruptionsimbriquées 8

6.1.6 Gestiondelalevéedesinterruptions 10

6.2 Interruptionsmatérielles 10

6.2.1 Scrutation logicielle 11

6.2.2 Priorité d’interruption 12

6.2.3 Interruptionvectorisée 13

6.3 Profil A . . e e e e 14

6.3.1 Sourcesd’interruptions e 15

6.3.2 Tabledesvecteursd’interruptions, 15

6.3.3 Traitementde linterruptionparleCPU 16

6.3.4 Traitementde l'interruption parle logiciel 18

6.3.5 Principe pour le traitement des interruptions matérielles 20

6.3.6 Gestiondelalevéed’interruptions 21

6.3.7 Prioritéetpréemption e 22

6.3.8 Controleurd’interruptions 23

6.3.9 Unité de gestion des entrées/sorties, 25

6.4 ProfilM . . . e 26

6.4.1 Sourcesd’interruptions e e 26

6.4.2 Tabledesvecteursd’interruptions 27

6.4.3 Traitementde linterruptionparleCPU 29

6.4.4 Prioritéetpréemption 31

6.4.5 Gestiondelalevéedesinterruptions, 32

6.4.6 Controleurd’interruptions 32

6.4.7 Unité de gestion des entrées/sorties, 33

HEIA-FR

Architecture des Ordinateurs

6.5 Exercices

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12

.. 34
Exercice1:Conceptgénéral 34
Exercice2: Typesd’événements i 35
Exercice 3:Séquenced’interruption L., 35
Exercice 4 : Table des vecteurs d’interruptions 35
Exercice 5: Commutationdecontexte 35
Exercice 6: Interruptionsimbriquées 35
Exercice 7:Sectioncritique L e 35
Exercice 8: Interruptions matérielles, 36
Exercice 9: Générationd’exceptions, 36
Exercice 10 : Gestion de la levée d’interruptions 36
Exercice 11: Priorité d’interruptions 36
Exercice 12 : Traitement d’un bouton-poussoir par interruption. 36

Jacques Supcik, Daniel Gachet, Luca Haab

6 Traitement des interruptions

Les interruptions sont un aspect incontournable des systemes a microprocesseurs. Elles per-
mettent d’interrompre temporairement 'exécution d’un programme informatique pour traiter des
événements prioritaires.

Les périphériques d’entrées/sorties les utilisent généralement pour signaler des événements asyn-
chrones nécessitant un traitement en temps réel, telle la fin de période d’une horloge, la complétion
d’unetache. Elles servent également a économiser du temps CPU en évitant des boucles de scrutation
(Polling Loop).

Des défaillances du code, des exceptions, peuvent également générer des interruptions temporaires
du programme pour étre traitées. Elles sont souvent dues a des dysfonctionnements inopinés du lo-
giciel résultant de son exécution, par exemple des instructions erronées, des calculs arithmétiques
incorrects ou des acces non autorisés a la mémoire.

Les systemes d’exploitation modernes utilisent les interruptions logicielles pour réaliser les appels
systeme. Ce type d’interruptions permet d’isoler les processus utilisateurs, des pilotes de périphé-
riques et des fonctions du noyau.

6.1 Concept général

Le traitement des interruptions (Interrupt Handling) est un sujet indissociable de la programmation
de systemes embarqués et de systemes sur puce (figure 6.1).

Une interruption (/Interrupt) peut étre vue comme un appel a une routine de traitement (ISR - Inter-
rupt Service Routine). Déclenchée par un événement interne ou externe au processeur, elle suspend
’exécution du programme en cours, puis appelle une routine, laquelle traite I'’événement pour finale-
ment retourner au programme interrompu. Hormis un délai, le traitement correct d’une interruption
ne doit pas altérer le comportement d’un programme en cours d’exécution.

HEIA-FR Architecture des Ordinateurs

Programme en L/

cours d'exécution 1) Eveénement Routine de traitement de
l'interruption (ISR)

Instruction i-... / .
Instruction i-2 \\SR -y|Débutde La.routl.ne
Instruction i-1 / 2) APPE $ | Instructionj
Instructioni — E, Instruction J:+l
Instruction i+1 4 Retoyr s |nStruct!onJ_+2
Instruction i+2 \L—\ Instruction j+...
Instruction i+... ® —Fin de la routine

FIGURE 6.1 - Principe

6.1.1 Types d’événements

Les événements externes au CPU, levés par des périphériques, génerent des interruptions matérielles.
Ces interruptions sont dites asynchrones, car elles surviennent indépendamment de l’exécution du
programme. Par contre, les événements internes, causés par des interruptions logicielles, des appels
systéme, ou par des exceptions, des dysfonctionnements du programme lors de son exécution,sont
dits synchrones. Elles sont dues a ’exécution du code et de ses instructions. Le signal “reset” est le
dernier type d’événements. Il provoque le reset du processeur et de la réinitialisation de ses périphé-
riques.

Interruptions matérielles

Les interruptions permettent de traiter de facon asynchrone des événements levés par le matériel
(Hardware Interrupt). Cette capacité a traiter des événements spontanés procure une grande réacti-
vité au systéme et a ses applications. Elles offrent un traitement rapide et approprié de I’événement
(figure 6.2).

.
Evénement

Périphérique P Données Fonction de

d'entrées/sorties | 7 traitement

Requéte d'interruption

FIGURE 6.2 - Interruption matérielle

Il existe une multitude d’exemples pour illustrer leurs utilités. Pour n’en citer qu’un, prenons une inter-
face de communication. Lors d’échanges d’information entre un pilote et un périphérique d’entrées/-

2 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA-FR

sorties gérant une interface de communication, interface ayant un comportement non prévisible/a-
|éatoire, il est souhaitable que le périphérique puisse lui-méme prendre Uinitiative des échanges, en
forcant le processeur a suspendre immédiatement I'exécution du programme en cours pour laisser le
pilote traiter les requétes (réceptions ou envois de données).

Des interruptions matérielles peuvent également étre mises en ceuvre pour faciliter le débogage d’ap-
plications logicielles lors de leur réalisation. Certains processeurs implémentent une infrastructure
permettant de stopper 'exécution du programme en surveillant le bus d’adresses et/ou de données
(Hardware Breakpoint, Watchpoint). Si 'adresse et/ou la donnée passant sur leur bus respectif cor-
respond a un point d’arrét, le processeur suspend l’exécution du programme et active la session de
débogage.

Interruptions logicielles

Les interruptions logicielles (Software Interrupt) permettent a un processus en espace utilisateur de
franchir la barriére de protection en quittant son mode non privilégié pour accéder au mode privilégié
du pP et ainsi aux fonctions fournies par ’OS dans l’espace noyau (figure 6.3). Cette fonctionnalité est
largement utilisée par les systemes d’exploitation (GNU/Linux, Windows, MacOS, etc.) pour les appels
systeme (syscall). Les processeurs ARM proposent l’instruction “SVC” (Supervisor Call) pour générer
cette interruption logicielle.

Application Appel systéme

- (syscall)

Espace utilisateur
A

Y
Espace noyau x

Routine de
traitement

\4

FIGURE 6.3 - Interruption logicielle

Les interruptions logicielles permettent également a des applications de communiquer avec des pro-
grammes (firmware, silicon software) contenus dans une mémoire non volatile du processeur ou de
ordinateur. BIOS (Basic Input/Output System) des machines “Windows” est un exemple typique.

Jacques Supcik, Daniel Gachet, Luca Haab 3

HEIA-FR Architecture des Ordinateurs

Elles permettent aussi a des outils de développement de poser des points d’arrét (Software Break-
points) facilitant le débogage d’applications. Les processeurs ARM proposent linstruction “BKPT”
(Break Point) pour générer cette interruption logicielle.

Exceptions

Les défaillances et dysfonctionnements dans les logiciels sont monnaie courante. Lors de 'exécu-
tion d’un programme, des erreurs peuvent survenir et perturber son bon déroulement. Les uP im-
plémentent tout un arsenal de mécanismes de reconnaissance de ces exceptions et fournissent aux
logiciels une série d’interruptions spécifiques permettant un traitement approprié (figure 6.4).

Ve
Dysfonctionnement

Routine de
Application traitement

' Exception

FIGURE 6.4 - Exceptions

Les exceptions logicielles les plus usuelles sont dues a des instructions illégales, des erreurs arith-
métiques ou des violations de privileges.

— Une instruction illégale (Undefined Instruction) est une instruction pas supportée et pas implé-
mentée par le jeu d’instructions du processeur. La levée de cette exception permet au logiciel
de réaliser par exemple des routines émulant le comportement de ces instructions non défi-
nies.

— Les unités de calculs (arithmétique et/ou a virgule flottante) sont congues pour signaler des
erreurs de calcul, telles les divisions par zéro. La levée d’une exception permet de détecter ce
type d’erreurs et de réaliser un traitement approprié.

— Les processeurs implémentant plusieurs modes de fonctionnement avec différents niveaux de
priviléges sont capables de détecter des violations de priviléges. Ces violations résultent d’ac-
ces a des ressources non autorisées, tel 'usage d’instructions nécessitant un niveau de privi-
leges supérieur ou des acces a des zones mémoires protégées.

Les exceptions matérielles sont dues généralement a des erreurs du logiciel, mais détectées par des
unités externes a l'unité centrale de traitement du processeur (CPU). Les exceptions matérielles les
plus courantes sont des erreurs d’accés sur le bus de données (Bus Error) ou sur le bus d’adresses
(Address Error) ainsi que le “reset” du processeur.

4 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA-FR

— Descontroleurs de périphériques ne répondant pas aux cycles d’acces dans les temps spécifiés

soit par configuration, soit par le matériel sont en principe a l'origine des erreurs sur le bus
de données et détectées par l'unité d’interface du bus processeur (BIU - Bus Interface Unit). La
cause de ces erreurs est généralement la non-activation de ’horloge cadencant les contréleurs.
Deux causes principales sont a l'origine des erreurs sur le bus d’adresses, les accés non alignés
et les acces non autorisés. La levée d’exceptions pour des acces non alignées dépend de I'im-
plémentation de la BIU et de sa capacité a effectuer des acces multiples pour lire ou écrire
des données non alignées. Les MMU/MPU (Memory Management Unit / Memory Protection Unit)
fournissent les outils indispensables pour la protection des zones mémoires et l'isolation des
processus. Elles sont congues en autre pour détecter des violations d’acces a la mémoire, telle
que des acces en lecture ou écriture non autorisés, I'exécution de code non autorisé, la protec-

tion de zones mémoire protégées pour un processus.

Reset du processeur

De multiples causes peuvent étre a l'origine du reset du processeur, de sa réinitialisation. La premiére

estbien naturellement la mise sous tension de la carte processeur. Cette mise sous tension est cruciale.

Une fois stabilisé, le signal “reset” est levé. Détecté par le processeur et ’ensemble de ses unités

et contrdleurs, il sert a leur réinitialisation. Les chiens de garde (Watchdog) sont la deuxiéme cause

importante. Ils servent a surveiller des interblocages logiciels (Deadlock). En cas de blocage, les chiens

de garde activent le signal “reset” et forcent la réinitialisation du systeme.

6.1.2 Séquence d’interruption

Lors de la levée d’une interruption suite a un événement interne ou externe, le processeur suspend

’exécution du programme en cours et effectue un traitement approprié a ’événement. Ce traitement

se déroule en quatre étapes principales (figure 6.5).

\ o

Evénement

FIGURE 6.5 - Séquence d’interruption

1. Attente d’autorisation pour le traitement des interruptions
2. Sauvegarde du contexte du programme en cours

Jacques Supcik, Daniel Gachet, Luca Haab

HEIA-FR Architecture des Ordinateurs

3. Exécution de la routine de traitement
4. Restauration du contexte et retour au programme suspendu

La premiere étape n’est présente que lors de requétes d’interruptions levées par des événements asyn-
chrones. Lors de tels événements, le CPU ne peut effectuer le traitement que si le traitement des inter-
ruptions est autorisé. La premiére cause de désactivation est le traitement d’une interruption. Celui-
ci bloque en effet le traitement d’autres interruptions tant que le traitement de interruption active
n’est pas terminé. La désactivation des interruptions est également un mécanisme indispensable a la
conception d’applications logicielles de bas niveau, proche du CPU et de ses périphériques. Il permet
en effet de protéger certaines sections critiques et éviter ainsi des conditions de concurrence (Race
Conditions) entre différentes routines de traitement. Un des exemples typiques sont des données par-
tagées et accédées par une routine de traitement d’interruption (ISR) et des routines exécutées par
une tache (Thread). Lors d’interruptions synchrones, cette étape n’existe pas, car la cause de I’événe-
ment est I'exécution de U'instruction. Dans de tels cas, le traitement de I’événement s’effectue immé-
diatement.

La deuxieme étape commence aussitot le traitement des interruptions autorisé. Le CPU suspend im-
médiatement le programme en cours, effectue une commutation de contexte avant de pouvoir appe-
ler la routine de traitement d’interruption. Dans une premiére phase, le CPU sauve I’état courant du
programme, 'adresse de retour vers le programme en cours d’exécution et les registres du processeur.
Puis, il blogue les interruptions et change son mode d’opération pour un mode privilégié adapté au
traitement de ’événement. Avant de chercher dans la table des vecteurs d’interruptions la routine de
traitement a exécuter. Selon l’architecture du processeur, ces phases sont effectuées complétement
par le CPU ou réparties entre CPU et logiciel.

En troisieme étape, l'identité de la source de [’événement déterminée, son traitement peut s’effec-
tuer.

En quatriéme étape, une fois ’exécution de la routine de traitement terminée, il ne reste qu’a restaurer
le contenu des registres du CPU pour rétablir le contexte du programme suspendu afin qu’il puisse
poursuivre son exécution ou il a été interrompu. Selon l'architecture du processeur, le CPU effectue
directement toutes les opérations nécessaires lors du retour de la routine de traitement. Avec d’autres
architectures, cette tache est déléguée au logiciel.

6.1.3 Table des vecteurs d’interruptions

La table des vecteurs d’interruptions sert d’interface entre le HW et le SW (figure 6.6). Le logiciel 'uti-
lise pour configurer le CPU afin qu’il puisse appeler la routine d’interruption appropriée a l’événement
a traiter. Cette table est indispensable pour adapter le P aux besoins spécifiques du systéme. Selon

6 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs

HEIA-FR

les architectures, 'emplacement de cette table peut étre fixe ou laissé au libre choix du logiciel et se

trouver aussi bien en mémoire vive que morte.

Table des vecteurs

Interruptions Matériel « [0] | Vecteur

i
i P\ [.]
Interruptions Logiciel --------1- CPU el
A RN
A L
Exceptions. <’ : *[nfl]

Numéro du vecteur

Source d'interruption d'interruption

FIGURE 6.6 - Traitement des interruptions au niveau du pP

Routine de
traitement

Routine de
traitement

Routine de
traitement

Lors de la levée d’une interruption, le CPU identifie la source d’interruption a laquelle un numéro

fixe de vecteur d’interruption lui est associé. Avec ce numéro, le CPU accéde a la table des vecteurs

d’interruption afin d’obtenir le vecteur d’interruption et appeler la routine de traitement. Ce vecteur

correspond, selon l'architecture du pP, soit a une instruction, soit a 'adresse de la routine de traite-

ment.

@ Quelques définitions utiles

- — La source d’interruption (Interrupt Source) est le signal ou ’événement capable

de lever une interruption ou de générer une exception

— La table des vecteurs d’interruptions (Interrupt Vector Table) contient les ins-

tructions ou les adresses des routines d’interruptions permettant de traiter les

événements

— Le vecteur d’interruption (Interrupt Vector), contenu de la table des vecteurs,

sur les processeurs ARM il correspond soit a une instruction, soit a l'adresse de la

routine de traitement

— Lenuméro du vecteur d’interruption (Interrupt Vector Number) est 'index dans

la table des vecteurs d’interruptions

6.1.4 Commutation de contexte

L’action de sauver les registres du uP pour appeler la routine de traitement lorsqu’une interruption

est levée, ou de les restaurer a la fin du traitement de linterruption, s’appelle la commutation de

Jacques Supcik, Daniel Gachet, Luca Haab

HEIA-FR Architecture des Ordinateurs

contexte (Context Switching). Ces deux commutations de contexte s’effectuent lors de la deuxiéme et
quatriéme étape de la séquence de traitement (figure 6.7).

|

Evénement

Commutation de contexte

FIGURE 6.7 - Séquence de traitement

Le temps qui s’écoule entre la levée de Uinterruption et Uexécution de la premiere instruction de la
routine de traitement d’interruption est appelé latence d’interruption (Interrupt Latency) (figure 6.8).
Elle est due a un facteur principal, le temps de désactivation des interruptions, temps durant lequel le
UP n’est pas autorisé a traiter des événements externes. Dans un systeme fréquemment interrompu,
la valeur de cette latence influence considérablement le comportement du systeme et peut dégrader
fortement ses performances. Afin de réduire la latence, les routines de traitement ne doivent effectuer
que le strict minimum d’opérations afin de satisfaire le P et ses contréleurs et déléguer le maximum
du traitement dans des taches (Thread).

|

Evénement

Latence

FIGURE 6.8 - Latence et gigue d’interruption

La variation de la latence d’interruption est appelée gigue d’interruption (Interrupt Jitter). Son am-
plitude est principalement due aux variations de la durée de désactivation des interruptions. La gigue
peut poser des problémes sérieux dans des systémes temps réel ayant des contraintes de temps exi-
geantes.

6.1.5 Interruptions imbriquées

Les systemes embarqués et les systemes sur puce (Soc) sont généralement confrontés a devoir piloter
simultanément un grand nombre de périphériques différents et gérer une multitude de sources d’in-
terruptions. Si les systemes d’exploitation riche ne permettent en principe qu’un traitement séquen-

8 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA-FR

tiel des interruptions, les OS temps réel (RTOS) proposent généralement un support logiciel pour un
traitement imbriqué des interruptions (Nested Interrupt Handling) pour les processeurs disposant de
cette capacité de traitement.

Dans un systeme de traitement d’interruptions imbriquées, chaque source d’interruptions regoit un
niveau de priorité. Ce niveau de priorité est généralement configurable et peut étre unique ou par-
tagé entre plusieurs sources d’interruptions. Lors du traitement d’une interruption (1), si une source
avec un niveau de priorité supérieure leve une interruption, le CPU suspend la routine en cours de
traitement pour traiter la source plus prioritaire (2) (figure 6.9).

|
Evénement 2
-
| V2)

’

Evénement 1

suspendu

____________________________ —

FIGURE 6.9 - Traitement imbriqué pour une source prioritaire

Par contre lors du traitement d’une interruption, si une source avec un niveau de priorité inférieure
leve une interruption, le CPU termine d’abord le traitement de la routine en cours (1) avant de traiter
la nouvelle source (2) (figure 6.10).

|

Evénement 2

retardé

|

Evénement 1

-

FIGURE 6.10 - Traitement retardé pour une source secondaire

Ce mécanisme est trés intéressant, car il permet de réduire le temps de latence pour les sources
d’interruptions prioritaires. Par contre, il peut rallonger le temps de traitement des sources secon-
daires.

Lors de la conception des routines de traitement d’interruptions, il est important d’ef-
o fectuer le minimum d’opérations, ceci afin de garantir de bon temps de réaction du sys-
téme. Si certains événements demandent de longs traitements, il est plus judicieux de
les déléguer a des taches d’arriere-plan (Background Task).

Jacques Supcik, Daniel Gachet, Luca Haab 9

HEIA-FR Architecture des Ordinateurs

6.1.6 Gestion de la levée des interruptions

La conception d’applications mettant en ceuvre des taches de fond (Background Tasks) coopérant
avec des taches événementielles (Event-Driven Tasks) requiert un soin tout particulier. Dans de tels
programmes, il est courant d’étre confronté a des situations de concurrence lors d’acces a des res-
sources partagées entre les différentes taches (Race Condition).

Pour protéger de telles ressources, il est souvent nécessaire d’interdire la levée des interruptions le
temps du traitement. Dans une telle situation, il est impératif de garantir a une tache de fond qu’elle
ne soit pas interrompue par une tache événementielle concurrente, une interruption, lorsqu’elle ac-
cede aux données. La portion de code impliquée dans ce traitement est nommée en programmation
concurrente section critique (Critical Sections).

Selon la nature de la ressource a protéger, les interruptions sont bloquées a des niveaux différents. Si
la ressource est globale, tel le compteur d’un sémaphore sur un uP mono-coeur, la protection s’effec-
tue généralement au niveau du CPU en inhibant toutes les interruptions. Par contre, s’il s’agit d’'une
ressource proche d’un périphérique, il est usuel de masquer les interruptions au niveau du contro-
leur du périphérique. Le CPU ainsi que les controleurs placés dans la chaine de traitement des inter-
ruptions disposent de registres spéciaux permettant au logiciel de gérer la levée des interruptions
asynchrones.

6.2 Interruptions matérielles

Tout changement d’état d’un périphérique se refléte dans ses registres d’état (STAT - Status Register).
Pour détecter ces changements, le logiciel peut scruter ces registres via le bus pP. Cette technique
fonctionne bien pour des changements périodiques ou excessivement rapides, mais requiert beau-
coup de temps CPU s'’ils sont sporadiques. Pour soulager le CPU et éviter ainsi la scrutation, une ligne
de requétes d’interruptions (IRQ-Line - Interrupt Request Line) permet au périphérique de signaler
tous ses changements au CPU (figure 6.11).

Périphérique E/S < Bus uP >
RX

" ——
CPU
S Ligne de requétes d'interruptions
L

(IRQ-Line)

FIGURE 6.11 - Ligne de requétes d’interruptions

10 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA-FR

En activant la IRQ-Line, le CPU suspend l’exécution du programme en cours pour exécuter une routine
de traitement des événements du périphérique (Interrupt Service Routine ou Interrupt Handler).

Ce mécanisme fonctionne parfaitement pour un périphérique, mais qu’en est-il pour plusieurs péri-
phériques? La solution se trouve dans les réponses a ces trois questions :

— Comment connecter les périphériques au CPU?
— Comment identifier le périphérique ayant levé une interruption?
— Comment arbitrer des requétes simultanées provenant de plusieurs périphériques?

Trois techniques permettent de répondre a ces questions :

— Scrutation logicielle
— Priorité d’interruption
— Interruption vectorisée

6.2.1 Scrutation logicielle

La premiere solution consiste a connecter tous les périphériques en paralléle sur une méme ligne de
requétes d’interruptions (figure 6.12). Cette ligne forme ainsi un “OU” cablé.

¢ > cpU

>
>

IRQ-Line

Périphérique Périphérique Périphérique
E/S E/S E/S

',‘{_".LL‘«

FIGURE 6.12 - Connexion de périphériques pour la scrutation logicielle

La gestion des périphériques s’effectue grace a leurs registres de contrdle et d’état. Ils permettent de
bloquer et d’autoriser la levée d’interruptions ainsi que d’identifier le périphérique ayant levé l'inter-

ruption.

Si une interruption apparait, le CPU suspend le programme en cours et exécute la routine de traite-
ment d’interruptions. Cette routine interroge successivement tous les périphériques connectés sur la
ligne d’interruption afin de déterminer le ou les périphériques ayant activé le signal. Cette technique
se nomme scrutation logicielle (Interrupt Polling), dont voici deux implémentations principales :
— Priorité fixe
les périphériques sont scrutés dans un ordre précis et déterminé a l’avance (Fixed Priority). Le
1er périphérique rencontré ayant levé une interruption est servi, puis le 2¢ et ainsi de suite.

Jacques Supcik, Daniel Gachet, Luca Haab 11

HEIA-FR Architecture des Ordinateurs

— Tourniquet
les périphériques sont ordonnés comme dans la premiere méthode, mais la recherche débute
depuis le dernier périphérique servi (Round-Robin). La recherche recommence au début,
lorsque la fin de la liste est atteinte.

La scrutation logicielle est simple a mettre en ceuvre, mais peut prendre énormément de temps selon
le nombre de périphériques connectés au CPU.

Cette technique est par contre couramment utilisée par des périphériques capables de lever de diffé-
rentes interruptions pour signaler divers types d’événements, telles la réception et la transmission de
données. Dans ’exemple ci-dessous (figure 6.13), le périphérique léve une interruption si la condition
suivante est vraie:

(TIE A TXE) V (RIE A RXE)

Périphérique E/S

Bus uP
RX : :

X

STAT | | | |TXR| |RXR| | | CPU

CTRL | |TXE |RXE | | TIE | | RIE | |

IRQ-Line N

>

FIGURE 6.13 - Logique d’interruption d’un périphérique pour la scrutation logicielle

La routine de traitement du pilote logiciel (io_handler) distingue entre une interruption due a ’émis-
sion (TX) et/ou a la réception (RX) en testant les fanions des registres de contrdle et d’état.

void io_handler() {
if ((jo->ctrl & CTRL_TIE) && (io->stat & STAT_TXR))
// dnterruption levée en émission

if ((io->ctrl & CTRL_RIE) && (io->stat & STAT_RXR))
// interruption levée en réception

6.2.2 Priorité d’interruption

Avec la deuxieme solution, chaque périphérique dispose d’une ligne de requétes d’interruptions dé-
diée connectée directement au CPU (figure 6.14).

12 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA-FR

Bus uP

< > CPU

>
3
>
>

IRQ-Line 1
IRQ-Line 2
IRQ-Line 3

Périphérique Périphérique Périphérique
E/S E/S E/S

l

FIGURE 6.14 - Connexion de périphériques pour la priorité d’interruption

Le CPU affecte a chacune de ces lignes de requétes d’interruptions une priorité matérielle fixe et
unique, par exemple aux lignes IRQ-Linel, IRQ-Line2 et IRQ-Line3, le CPU accorde les priorités 1, 2
et 3. Lorsqu’une ou plusieurs requétes d’interruptions sont levées, le CPU examine les lignes de re-
quétes d’interruptions et détermine la ligne active la plus prioritaire afin de servir le périphérique
correspondant.

Pour chaque priorité d’interruptions (Interrupt Priority), le CPU dispose d’une entrée dans sa table
des vecteurs d’interruptions. Ceci permet aux pilotes logiciels d’attacher une routine de traitement

propre a chaque périphérique.

Cette technique améliore grandement le traitement des interruptions, car elle élimine la scrutation
logicielle des périphériques. Elle permet aussi un traitement imbriqué des interruptions et réduit la
latence pour les événements les plus importants et les plus prioritaires. Cependant, elle se butte
au nombre de lignes de requétes d’interruptions que les CPU disposent, souvent qu’une ou deux

lignes.

6.2.3 Interruption vectorisée

La troisieme solution consiste a générer des interruptions vectorisées (Vectored Interrupt). Celle-ci se
caractérise par la mise en ceuvre d’un contréleur d’interruptions permettant de connecter une mul-
titude de périphériques, chacun avec une ou plusieurs lignes de requétes d’interruptions dédiées (fi-
gure 6.15). Il associe a chaque ligne un numéro de vecteur d’interruptions unique (Unique Interrupt
Vector Number).

Lors de la levée d’une interruption, le contréleur dispose d’une logique interne pour prioriser et iden-
tifier la source d’interruption. Une fois la source identifiée, le contréleur informe le CPU. L3, il existe
deux réalisations possibles d’interface entre le contréleur et le CPU.

Avec la premiere interface, le contréleur d’interruption informe le CPU en activant une ligne de re-

Jacques Supcik, Daniel Gachet, Luca Haab 13

HEIA-FR Architecture des Ordinateurs

Bus pP

[

Périphérique Périphérique Périphérique
E/S E/S E/S

< > CPU

3>

IRQ-Line

Contrdleur
d'Interruptions

FIGURE 6.15 - Connexion de périphériques pour des interruptions vectorisées

quétes d’interruptions (IRQ-Line), pour laquelle, il n’existe qu’une seule entrée dans la table des vec-
teurs d’interruptions. Lorsque l’interruption est levée, la routine de traitement attachée dans la table
des vecteurs acquiert 'identité de la source d’interruption, le numéro de vecteur, en lisant un registre
du controleur d’interruptions. La source connue, il appelle ensuite la routine de traitement correspon-
dant au périphérique. Avec ce type d’interface, le logiciel effectue I'essentiel de Uidentification de la
source.

Avec la deuxieme interface, le contréleur d’interruption informe toujours le CPU en activant une ligne
de requétes d’interruptions (IRQ-Line). Par contre, lorsque linterruption est levée, c’est le CPU qui
acquiert 'identité de la source d’interruption, le numéro de vecteur. Il utilise ensuite ce numéro de
vecteur pour appeler la routine de traitement correspondant au périphérique, laquelle a été précé-
demment attachée directement dans la table des vecteurs. Avec cette interface, 'essentiel de I’iden-
tification de la source d’interruption étant réalisée par le controleur et le CPU, le logiciel n’a plus qu’a
effectuer le traitement approprié a ’événement.

Les interruptions vectorisées sont spécialement bien adaptées a un traitement imbriqué des interrup-
tions.

6.3 ProfilA

Les processeurs du profil Aimplémentent une gestion plutét basique du traitement des interruptions
au niveau du CPU. Le CPU effectue seulement les opérations impératives, sauvegarde de I'adresse de
retour et du registre d’état ainsi que I'appel de la routine de traitement de bas niveau. Il laisse la plus
grande partie des opérations a effectuer pour le traitement des interruptions et exceptions au logiciel.
Ce choix offre une plus grande liberté pour la réalisation des logiciels et plus particulierement des
systéemes d’exploitation riches.

14 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA-FR

0 Les exemples de ce chapitre se basent sur le processeur ARM Cortex-A8 de l’architecture
ARMvVT7-A et plus spécialement le uP de TI AM3358.

6.3.1 Sources d’interruptions

Les uP du profil A! connaissent 7 sources d’interruptions (figure 6.16) :

— Les exceptions (Reset, Undefined Instructions, Data Abort, Prefetch Abort)
— Les interruptions matérielles (IRQ - Interrupt Request et FIQ - Fast Interrupt Request)
— Les interruptions logicielles ou systémes (SVC - Supervisor Call, SMC - Secure Monitor Call, etc.)

- | Table des vecteurs
(Reset) —»

Undefined —> -

System (SVC, SMC, ...) —>
Prefetch Abort —>1 ¢

Data Abort —>

IRQ—
FIQ—>,

[0] Vecteur
1]

¥
CPU ’

[
L]
S
RN

Sources d'interruptions

Interruptions

matérielles [n-1]

GIC

FIGURE 6.16 - Profil A - Sources d’interruptions

De ces 7 sources, 'exception “Reset” est traitée généralement par un micro-code br{ilé dans une ROM
du processeur, rendant impossible I'exécution de traitements spécifiques lors de la levée de cette ex-
ception. Ce n’est que lors du lancement de l’application logicielle que ceux-ci peuvent étre exécutés.
Ne disposant que de deux lignes de requétes d’interruptions matérielles, le CPU utilise un contréleur
d’interruptions (GIC - Generic Interrupt Controller) pour gérer les requétes des périphériques internes
et externes et les relayer vers le CPU. Le uP TI AM33582, un uP ARM Cortex-A8 3, implémente quant a
lui un “INTC” comme contréleur d’interruptions.

6.3.2 Table des vecteurs d’interruptions

Limplémentation de la table des vecteurs est assez simple si l'on utilise le langage assembleur. Il suffit
de définir une table avec l'instruction pour appeler les routines de traitement de bas niveau (les hand-
lers). On prendra soin a n’utiliser que U'instruction “b” et non pas “bL”. Il est en effet essentiel de ne pas
“écraser” le contenu du registre “LR” contenant I'adresse de retour vers le programme suspendu.

.text

1. ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
2. AM335x Sitara(TM) Processors Technical Reference Manual
3. Cortex-A8 Technical Reference Manual

Jacques Supcik, Daniel Gachet, Luca Haab 15

https://developer.arm.com/documentation/ddi0406/cd
https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf
https://developer.arm.com/documentation/ddi0344/k/

HEIA-FR Architecture des Ordinateurs

.align 5
vector_table:
1: b 1b
undef_handler
svc_handler
prefetch_handler
data_handler
1b
irq_handler
fiq_handler

O T T OTUOTUTUT

La source “reset” étant traité par le uP et la source “reserved” n’étant pas jamais levée, il n’est
pas nécessaire d’appeler une routine de traitement. Cependant, pour des raisons de fiabilité et de
robustesse du code, il faut éviter d’exécuter une autre routine si le uP appelle quand méme l'une de
ces sources. Pour cela l'instruction “1: b 1b”, permet de forcer le CPU a boucler sur elle-méme.

Les uP ARM Cortex-A8 permettent de placer la table des vecteurs d’interruptions librement en mé-
moire. La seule contrainte est que celle-ci doit étre alignée sur 32 bytes (2°). Le co-processeur P15
dispose d’un registre pour spécifier ’adresse de base de cette table. Les deux instructions ci-dessous
permettent de charger le registre avec cette adresse.

ldr ro, =vector_table
mcr pl5, #0, r0, cl2, cO, #0O

Il est impératif d’effectuer ce placement avant d’autoriser la levée d’interruptions.

6.3.3 Traitement de linterruption par le CPU

Durant la deuxieme étape du traitement des interruptions par le uP, le CPU sauve un état minimal
afin de pouvoir appeler une routine de traitement des interruptions de bas niveau pour permettre le
retour au programme en cours avant la levée de U'interruption.

Sauvegarde de ’état minimal du CPU

Lorsqu’une interruption est levée et que son traitement est autorisé, le CPU effectue les opérations
suivantes:

— Suspend l'exécution du programme en cours

— Détermine la source d’interruption

— Fixe le nouveau mode du processeur

— Sauve le compteur ordinal (PC), ’'adresse de retour et le registre d’état (CPSR)
— Désactive la levée des interruptions matérielles

16 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA-FR

Pour des raisons de performances, le CPU sauve son état minimal dans des registres supplémentaires
(Banked Registers). Ces registres sont déterminés par le nouveau mode du CPU (figure 6.17). Uadresse
de retour est sauvée dans le registre LR_<mode> et le CPSR dans le registre SPSR_<mode>.

User & System
Registers

RO
R1
R2
R3
R4
R5
R6
R7
RS
R9

R10
R11
R12

R13/SP

R14/LR

R15/PC

CPSR

Banked Registers

SP_abt
LR_abt

>
>
>

' v v v
| sPsRusvc | | SPS;_fiq | | ssrirg | | sPsR_und | | sPSR_abt

FIGURE 6.17 - Profil A - Sauvegarde de I’état minimal du CPU

Le nouveau mode du CPU se refléte dans le champ de bits M[4 :0] du registre CPSR (figure 6.18). La
désactivation des interruptions matérielles, également reflétées dans le registre CPSR, dépend de la
source d’interruption. La levée d’interruptions IRQ est toujours désactivée (bit | = 1), ceci indépen-
damment de la source d’interruption (interruption matérielle, interruption logicielle ou exception).
Par contre, les interruptions FIQ ne sont désactivées (bit F = 1) que lors de la levée d’une interruption
matérielle FIQ.

31 30 29 28 27 26 25 24 23

20 19

16 15

10 9

8 7 6 5 4 0

IT[1:0]| J

CPSR N Z C V[

GE[3:0]

IT[7:2]

E

NIl F Mode[4:0]

FIGURE 6.18 - Profil A - Registre d’état

Jacques Supcik, Daniel Gachet, Luca Haab

17

HEIA-FR Architecture des Ordinateurs

Appel de la routine de traitement de bas niveau

La sauvegarde de l’état minimal du CPU terminée, le CPU appelle la routine de traitement correspon-
dant a la source d’interruption en exécutant U'instruction contenue dans la table des vecteurs. Cette
opération s’effectue en chargeant le registre “PC” avec 'adresse de la table des vecteurs corrigée avec
loffset correspondant au numéro du vecteur d’interruption.

PC = &vector_table[vector_number];

Sortie de la routine de traitement d’interruption

Pour sortir de la routine de traitement et poursuivre ’exécution du programme, le CPU restaure le
contenu du registre “CPSR” et charge l’adresse de retour contenue dans le registre “LR” dans le re-
gistre “PC”. Linstruction ci-dessous en principe suffit :

movs pc, lr

Source Offset | Instruction de retour
Reset n/a n/a

Undefined 0 movs pc, Ir

SvC 0 movs pc, Ir

Prefetch Abort 4 subs pc, Ir, #4

Data Abort 4 subs pc, Ir, #4

IRQ 4 subs pc, Ir, #4

FIQ 4 subs pc, Ir, #4

FIGURE 6.19 - Profil A - Correction de 'adresse de retour

Cependant, selon la source d’interruption, 'adresse contenue dans le registre “LR” doit étre préala-
blement corrigée (figure 6.19). Cette offset est une relique des premieres implémentations des uP ARM.
La troisieme colonne de la table ci-dessus propose une instruction de retour avec cet ajustement.

6.3.4 Traitement de Pinterruption par le logiciel

Durant la deuxiéme phase du traitement par le logiciel, la routine de traitement sauve le contexte du
programme interrompu, les registres pas sauvés par le CPU, avant d’appeler la routine de traitement
appropriée a la source d’interruption. Le traitement terminé, elle restaure le contexte et retourne au
programme suspendu.

18 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA-FR

Le peusdo-code ci-dessous indique les opérations a effectuer.

sub 1r, #OFFSET // only 1if necessary
stmfd sp!, {r0-r3,r12,1r} // save the context
mov ro, #VECTOR_NR // indicate vector number (source)
bl interrupt_handler // process interrupt

ldmfd sp!, {r06-r3,r12,pc}* // restore the context

Une technique courante avant la sauvegarde du contexte du programme en cours consiste a corriger
’adresse de retour contenue dans le registre “LR” (1" instruction) a 'entrée de la routine d’interrup-
tion et de la sauver avec les autres registres (2¢ instruction). La valeur de la constante “OFFSET” est
spécifique a la source d’interruption.

Sur ce type de pP, processeur d’application, l'appel des routines de traitement des interruptions s’ef-
fectue généralement par “callback” en réalisant le concept d’écouteur (Listener). Alors pour des rai-
sons de confort de réalisation, juste les instructions n’existant pas en langage de programmation
évolué sont effectuées en assembleur. Le reste du traitement est délégué a la fonction générique
“interrupt_handler” (4¢instruction). Cette routine sert d’intermédiaire a l'appel de la routine
de traitement spécifique a la source de Uinterruption au niveau applicatif. Elle recoit en paramétre
Pindication sur la source d’interruption, le numéro de vecteur “VECTOR_NR” (3¢ instruction).

La restauration du contexte du CPU a la sortie de la routine de traitement d’interruption s’effectue en
une seule opération (5¢instruction). L'utilisation du “*” avec le registre “PC” indique au CPU qu’il doit
restaurer le “CPSR” depuis le “SPSR”.

Utilisation d’une macro

Lutilisation d’une macro permet d’adapter simplement ce code aux différentes sources d’interrup-
tions.

.macro ll_interrupt_handler offset, vector_nr

nop
.if \offset != 0 // adjust return address
sub 1r, #\offset // only if necessary
.endif
stmfd sp!, {ro-r3,r12,1r} // save the context
mov ro, #\vector_nr // indicate vector number (source)
bl interrupt_handler // process 1interrupt
ldmfd sp!, {r06-r3,rl12,pc}”® // restore the context
.endm

Avec cette macro, les routines de traitement de bas niveau appelées depuis la table des vecteurs se
définissent comme suit :

.text

Jacques Supcik, Daniel Gachet, Luca Haab 19

HEIA-FR Architecture des Ordinateurs

.align 2
undef_handler: 11l_interrupt_handler 0, INT_UNDEF
svc_handler: 1l_interrupt_handler 0, INT_SWI
prefetch_handler: 11_interrupt_handler 4, INT_PREFETCH
data_handler: 1ll_interrupt_handler 4, INT_DATA
irq_handler: 1l_interrupt_handler 4, INT_IRQ
fiq_handler: 1ll_interrupt_handler 4, INT_FIQ

La valeur du numéro de vecteur passé en 2¢ paramétre doit bien évidemment correspondre celle uti-
lisée par la fonction “interrupt_handler” réalisée en langage évolué.

Pointeurs de piles

Chaque mode du processeur possede sa propre pile (figure 6.18). Cette pile, accessible par le registre
“SP” du mode correspondant doit étre initialisée impérativement avant la levée d’interruption ou
d’une exception. Cette opération passe par la création d’une pile en réservant une zone mémoire dans
la mémoire vive et ensuite par 'assignation du registre “SP” avec l’adresse la plus haute de la pile.

Le code ci-dessous donne un exemple d’implémentation pour 'un des modes du processeur, le mode

IRQ.

.bss

.align 4
irg_s: .space 0x2000 // reserve stack of the irq mode
IRQ_STACK_TOP: // points to the top of the stack

.text

.align 2

msr cpsr_c, #0xd2 // switch to irqg mode

1dr sp, =IRQ_STACK_TOP // init SP with top stack address

Dans I'exemple ci-dessus, la réservation de la pile est statique. Il est bien évidemment possible de la
réserver dynamiquement.

6.3.5 Principe pour le traitement des interruptions matérielles

La signalisation d’événements par des périphériques d’entrées/sorties passe par plusieurs multi-
plexeurs avant d’arriver sur 'une des lignes d’interruptions du CPU. Ces multiplexeurs permettent de
connecter une grande quantité de périphériques au CPU. Ils sont également en charge d’arbitrer, de
prioriser et d’identifier efficacement les périphériques ayant levé une interruption. Comme présenté
sur la figure ci-dessous (figure 6.20), les uP Cortex-A8 implémentent deux multiplexeurs, un contro-
leur d’interruption (INTC - Interrupt Controller) et une unité de gestion des broches d’entrées/sorties
(GPIO - General Purpose Input Output).

20 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA-FR

Table des vecteurs

Broche

E/S \ [0] Vecteur
Externe i Y v W
| LS o
INTC | ®a | cPU .
E/S A0
Internes [n-1]

Externe au P Interne au pP
FIGURE 6.20 - Profil A - Connexion des périphériques au CPU

LINTC est connecté directement au CPU. Sa fonction est de multiplexer toutes les lignes d’interrup-
tions des périphériques internes du P vers le systeme d’interruptions du CPU. L'INTC permet d’arbi-
trer et de prioriser les différentes requétes. Pour faciliter le traitement des requétes par le logiciel, il
livre un numéro de vecteur d’interruption permettant d’identifier tres efficacement la source d’inter-
ruption. Ce numéro est unique a chaque périphérique. L'INTC permet de connecter jusqu’a 128 lignes
de requétes d’interruptions.

Le GPIO, hormis sa fonction de contréleur d’entrées/sorties numériques, permet, par ses broches, de
connecter au systéme d’interruptions du CPU des périphériques externes d’entrées/sorties. Le GPIO
n’offre aucun support pour identifier la source d’interruption. Il ne livre dans un registre qu’un set de
bits indiquant quelles broches ont levé une interruption. C’est ensuite au logiciel de scruter chaque
bit pour identifier la broche a servir et a quittancer apres traitement.

Pour trouver la source lors d’une interruption, le CPU appelle juste la routine de traitement d’inter-
ruption de bas niveau (interrupt handler) contenue dans sa table des vecteurs et correspondant a la
source de Uinterruption. Il délégue le reste du traitement au logiciel (figure 6.21).

La routine de traitement d’interruption (intc handler) traite les interruptions matérielles (IRQ et/ou
FIQ) levées par le contréleur INTC. Pour identifier le périphérique interne du uP ayant levé Uinterrup-
tion, elle demande au controleur INTC de lui livrer le vecteur d’interruption pour appeler la routine de
traitement correspondant au périphérique. Si le vecteur correspond a un contréleur GPIO, la routine
de traitement du contréleur (gpio handler) demande alors au contréleur GPIO de lui livrer la broche
a lorigine de linterruption, pour appeler la routine de traitement au niveau de 'application (applica-
tion e/s externe) et effectuer le traitement souhaité.

6.3.6 Gestion de la levée d’interruptions

La gestion de la levée des interruptions au niveau du CPU par le logiciel passe par la manipulation des
fanions “I” et “F” du registre “CPSR”. Le fanion “I” gere la levée des interruptions provenant de la
ligne d’interruptions IRQ, tandis que le fanion “F” celle des FIQ.

Jacques Supcik, Daniel Gachet, Luca Haab 21

HEIA-FR Architecture des Ordinateurs

HW | osw
Externe e/s externe
' -y
E/S » application
Interne ! e/sinterne
g g;;io
handler
I 4
intc
handler
-
by interrupt
handler
\ -
Table

Vecteurs

FIGURE 6.21 - Profil A - Pyramide de traitement des interruptions

Pour bloquer la levée d’interruptions, les fanions doivent étre mis a 1

mrs ro, cpsr
orr ro, #0xe0
msr cpsr, ro

par contre, s’ils sont mis a zéro, la levée d’interruptions est autorisée.

mrs ro, cpsr
bic ro, #0xe0
msr cpsr, roO

Le CPU n’autorise la manipulation de ces fanions que si le programme s’exécute en mode privilégié.

Pour rappel, lorsqu’une interruption matérielle est levée, le CPU change de mode et
o sauve son état dans les registres “LR” et “SPSR”, puis il bloque la levée de futures inter-
ruptions en manipulant les fanions “I” et “F”
— Siune IRQ est levée, alors “I” est mis a 1 et “F” reste inchangé
— SiuneFIQ est levée, alors “I” et “F” sont misa 1

6.3.7 Priorité et préemption

La notion de priorité des interruptions et exceptions prend tout son sens lorsque celles-ci surviennent
simultanément. Les uP du profil A les classent sur 7 niveaux (figure 6.22). Le niveau 1 est le plus prio-

22 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA-FR

ritaire et le niveau 7 le moins.

Priorité # | Description

la plus haute 1 | Reset

2 | Data abort

3 | FIQ

4 | IRQ

5 | Imprecise abort

6 | Prefetch abort

la plusbasse 7 | Undefined instruction / SVC / BKPT
FIGURE 6.22 - Profil A - Priorités des interruptions

Si plusieurs événements sont levés exactement au méme instant, le CPU les traite séquentiellement
en commencgant par le plus prioritaire. Lors de la levée simultanée d’interruptions matérielles par des
périphériques, le controleur d’interruptions (INTC) se charge de les prioriser et de les relayer au CPU
par les lignes de requétes IRQ et FIQ.

Linfrastructure des uP de ce profil permet une gestion imbriquée des interruptions et exceptions. Ce-
pendant, il est peu courant que les systemes d’exploitation riches en profitent. La préférence est sou-
vent donnée a une gestion minimale dans les routines de traitement pour déléguer l'essentiel de la
gestion de ’événement a des taches de fond (Thread) et éviter ainsi un traitement préemptif.

6.3.8 Controleur d’interruptions

Le contréleur d’interruptions INTC multiplexe 128 sources d’interruptions. Chacune de ces sources
correspond a une ligne de requétes d’interruptions d’un périphérique interne au processeur. Il dispose
de registres pour prioriser (Priority) et bloquer (Mask) chaque ligne de requétes d’interruptions, ainsi
que pour simuler (Software Interrupt) par logiciel la levée d’une interruption (figure 6.23).

Lorsque des interruptions sont levées, le controleur sélectionne, grace a son unité pour trier les priori-
tés (Priority Sorter), la source (Source) la plus prioritaire et la sert en premier. Une fois servie, le logiciel
quittance le traitement par le registre de contrdle (Control), permettant ainsi la levée de la prochaine
source. Si aucune priorité n’a été attribuée par logiciel, le contrdleur utilise le numéro de la source.

Le contrdleur INTC dispose également d’une logique pour ne prendre en compte que les sources ayant
un niveau de priorité suffisant pour étre traitées. Si le niveau de priorité de la source d’interruption
est inférieur ou égal a une valeur prédéfinie (Threshold), la requéte sera bloquée jusqu’a ce que le
threshold soit ajusté (figure 6.24).

Jacques Supcik, Daniel Gachet, Luca Haab 23

HEIA-FR Architecture des Ordinateurs

Control — Mask

Y
IRQ (1/0 Device

Priority
FIQ Sorter ' < Software Interrupt

IRQ-Line

A

Threshold

Priority
>

hreshold s
Priority

FIGURE 6.23 - Profil A- INTC

Source Priority Level
3

2]
N
o2}
w

Oxff

Current Threshold
e
Unaccepted
interrupts

wilNp = O

Threshold

62
63

T
Accepted
interrupts

x [x [x [x[|x[x|x|[<]|o
X [Xx [Xx [x X |X |||+
X [x [x [x Ix |||~
LT R R R S S N SN
B R RS S S S S S
X |Ix []2(]=
LIRS RS LS LS LN LS LS

FIGURE 6.24 - Profil A - Niveaux de priorités de 'INTC

24 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA-FR

Bien que disponible, cette fonctionnalité permettant de réaliser un systéme de traitement des inter-
ruptions imbriquées n’est généralement pas utilisée par les systemes d’exploitation riches. Ceux-ci
préferent un traitement rapide en mode interruptif pour déléguer la plus grande portion du traite-

ment dans des taches de fond.

6.3.9 Unité de gestion des entrées/sorties

L’unité de gestion des entrées/sorties (GPIO - General Purpose Input Output) sert a piloter 32 broches
(Pin) numériques (figure 6.25). Chaque broche peut se configurer aussi bien en entrée qu’en sortie
(Output Enable).

Data Output 2

Pins

Output Enable

1/0 PAD Mux

Data Input <

il
oy

v
_IRQ_O e ~ IRQ Mode
. ool
JRQ1 Controller IRQ Status

IRQ Control

ﬁ

FIGURE 6.25 - Profil A - GPIO

Configurés en entrée, des périphériques externes au pP, tels des boutons-poussoirs, peuvent les uti-
liser comme ligne de requétes d’interruptions. Deux lignes de requétes connectent 'unité GPIO au
controleur INTC, les lignes IRQ_O et IRQ_1. Ces deux lignes permettent de prioriser certaines broches

par rapport a d’autres.
Chaque broche peut de générer une interruption si elle détecte (figure 6.26)

— Niveau haut du signal (High Level)
— Niveau bas du signal (Low Level)
— Flanc descendant (Falling Edge)
— Flanc montant (Rising Edge)

Bien qu’il soit possible de générer une interruption selon le niveau du signal, on préfere généralement
la détection sur les changements d’état, sur les flancs montants, descendants ou les deux.

Lors de la levée d’une interruption sur une broche, l'unité GPIO la propage vers le contréleur INTC.
Afin que cette interruption atteigne le CPU, il faut encore autoriser la levée d’interruptions du contro-
leur INTC. Hormis la liste des broches ayant levé une interruption, 'unité GPIO ne fournit pas d’autres

Jacques Supcik, Daniel Gachet, Luca Haab 25

HEIA-FR Architecture des Ordinateurs

High Level

Falling Edge Rising Edge
Low Level

FIGURE 6.26 - Profil A - GPIO Systeme de détections

indications. C’est au logiciel d’itérer sur les différentes broches pour identifier celles ayant levé une

interruption et la servir.

6.4 ProfilM

Les processeurs du profil M implémentent une gestion des interruptions au niveau du CPU permet-
tant un traitement logiciel réalisé en langage C/C++. Sur ces P, il n’est pas nécessaire de réaliser des
routines de bas niveau en assembleur. Le CPU se charge de sauvegarder le contexte du programme
en cours avant d’appeler la routine de traitement de I’événement et de le restaurer apres traitement.
Ce choix simplifie énormément la réalisation des applications logicielles.

o Les exemples de ce chapitre se basent sur le processeur ARM Cortex-M4F et plus spécia-
lement le uC de ST STM32F412 et utilisent la bibliotheque “1ibopencm3” sous 'envi-
ronnement “platformio”

6.4.1 Sources d’interruptions

Les uC du profil M connaissent 15 sources d’interruptions internes et de multiples sources d’inter-
ruptions externes (figure 6.27). Toutes ces sources d’interruptions sont connectées et gérées par le
contréleur d’interruptions (NVIC - Nested Vectored Interrupt Controller).

Sur les 15 sources internes, 10 sont actuellement allouées* :

— Reset : ’exception est levée lorsque le uC est mis sous tension ou lors d’un reset local du puC
par logiciel. Elle génere la réinitialisation du CPU et de ses périphériques.

— NMI : Vinterruption (Non-Maskable Interrupt) est Uinterruption la plus élevée apres le reset et
ne peut pas étre bloquée. Elle sert généralement a des composants matériels pour signaler des
erreurs exigeant un traitement immédiat ne pouvant étre retardé.

4. Armv7-M Architecture Reference Manual - chapitre B1.5

26 Jacques Supcik, Daniel Gachet, Luca Haab

https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/armv7-m_reference-manual.pdf

Architecture des Ordinateurs HEIA-FR

E/S
' Interne Table des vecteurs
26 Broche - e
/ ——> EXTI — v
Externe : 1] Vecteur
IRQ Systéme /'/ [2]
> NVIC < CPU .
_ Exceptions S
E/s || 47
Interne T [n-1]
: SysTick
Externeau uP : Interne au pP Timer

FIGURE 6.27 - Profil M - Systeme d’Interruptions

— HardFault : 'exception signale des fautes génériques ne trouvant aucune autre exception of-
frant un traitement permettant de récupérer la situation d’erreur. Elle est généralement le résul-
tat d’un enchainement de fautes, dues a un non-traitement d’autres fautes, telles MemManage,
BusFaultouUsageFau'lt.

— MemManage : I’exception signale une violation de la protection de la mémoire détectée par la
MPU (Memory Protection Unit).

— BusFault : 'exception signale des erreurs lors de transfert de données ou d’instructions sur les
bus systéme.

— UsageFault : 'exception signale des erreurs causées par l'exécution d’instructions, mais non
liées a la mémoire, par exemple des instructions non définies, des acces non alignés, des divi-
sions par zéro, des acces a des coprocesseurs non existants ou déclenchés, etc.

— DebugMonitor : I'exception signale des événements de debugging.

— SVCall : I'exception est levée suite I'appel de 'instruction “SVC”. Les systemes d’exploitation
L'utilisent pour les appels systéeme (syscall).

— PendSV: U'exception (Pendable Service Call) est levée par logiciel pour des appels systéme asyn-
chrones.

— SysTick :'interruption est levée par ’horloge interne au uC. Les systémes d’exploitation ['uti-
lisent pour générer ’horloge systéme.

Le contréleur NVIC est capable en principe de gérer jusqu’a 496 sources d’interruptions externes. Ce-
pendant le nombre exact de sources dépend de la réalisation spécifique du fabricant du uC.

6.4.2 Table des vecteurs d’interruptions

La conception de la table des vecteurs est tres simple a utiliser avec le langage C/C++. Elle contient
l’adresse initiale du pointeur de pile “MSP” (Main Stack Pointer) ainsi que les adresses des routines de
traitement desinterruptions. Comme le montre le pointeur defonction“vector_table_entry_t”

Jacques Supcik, Daniel Gachet, Luca Haab 27

HEIA-FR Architecture des Ordinateurs

ces routines sont des fonctions sans paramétre ni valeur de retour.

#define NVIC_IRQ_COUNT 96

typedef void (*vector_table_entry_t) (void);

typedef struct {

// vector number

unsigned int xinitial_sp_value; // MSP
vector_table_entry_t reset; // 1
vector_table_entry_t nmi; /] 2
vector_table_entry_t hard_fault; // 3
vector_table_entry_t memory_manage_fault; /] 4
vector_table_entry_t bus_fault; // 5
vector_table_entry_t usage_fault; // 6
vector_table_entry_t reserved_x001c[4]; // (7-10)
vector_table_entry_t sv_call; // 11
vector_table_entry_t debug_monitor; // 12
vector_table_entry_t reserved_x0034; //(13)
vector_table_entry_t pend_sv; // 14
vector_table_entry_t systick; // 15

vector_table_entry_t

irgq[NVIC_IRQ_COUNT];

} vector_table_t;

__attribute__ ((section(".vectors"))) vector_table_t vector_table={};

La table des vecteurs (vector_tab'le) peut étre placée librement dans la mémoire SRAM ou Flash
(Code) du processeur a l'aide du registre “VTOR” contenu dans le bloc de contréle du systéme (SCB -
System Control Block) °. Par défaut et grace a la section “. vectors”, 'éditeur de liens (Linker) place
la table des vecteurs dans les premiers blocs de la Flash a 'offset 0.

Avec la bibliotheque “1ibopencm3”, cette table est initialisée dans le module “vector.c”. Quant
aux routines de traitement par défaut, elles sont définies dans le fichier “nvic.h” de la famille du
uC. Pour attacher une routine spécifique a l'application (ISR - Interrupt Service Routine) au systeme
de traitement des interruptions, il suffit de surcharger la routine par défaut en implémentant une
routine correspondante. Celle-ci doit respecter le nom par défaut, par exemple pour le “timer 2” la
routine doit impérativement étre nommée “void tim2_isr(void)”. Son numéro de vecteur est
“NVIC_TIM2_IRQ”

Au démarrage, le processeur initialise le registre “MSP” avec la valeur de la premiére entrée de la table
des vecteurs (initial_sp_value). Cette valeur initiale est générée par l’éditeur de lien et pointe sur le
sommet de la SRAM (adresse la plus haute). Le processeur exécute ensuite la routine attachée a la
source “Reset”.

5. STM32 Cortex®-M4 MCUs and MPUs programming manual (PM0214) - chapitre 4.4

28 Jacques Supcik, Daniel Gachet, Luca Haab

https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/stm32-cortexm4-programming-manual.pdf

Architecture des Ordinateurs HEIA-FR

6.4.3 Traitement de linterruption par le CPU

Lors de la levée d’une interruption autorisée, c’est-a-dire une interruption ayant une priorité suffi-
sante, le CPU sauve le contexte du programme en cours d’exécution avant d’appeler la routine de
traitement correspondante et de le restaurer une fois Uinterruption servie. Cette technique décharge
le logiciel des opérations a effectuer au niveau du CPU et lui permet ainsi de s’occuper directement et
seulement du traitement de ’événement (figure 6.28).

HW | osw

E/S > application
Externe e/s externe

E/S e R application ,"’1
Interne ! e/sinterne

A

EXTI

NVIC

S

CPU

Table
Vecteurs

FIGURE 6.28 - Profil M - Traitement des interruptions

Pour sauver le contexte, le CPU bascule dans le mode “Thread”. Il sauve ensuite les registres qui ne
sont pas sauvés lors de l'appel de fonction (Scratch Registers), le registre de liens (LR - Link Register),
l’adresse de retour (Return Address) ainsi que le registre de statut du programme (xPSR - Program
Status Register) selon le standard AAPCS © (figure 6.29). Si nécessaire et afin de respecter la convention
d’alignement de la pile sur 8 octets, le CPU réserve un mot supplémentaire sur la pile.

Si le uC dispose d’une unité de calcul a virgule flottante (FPU - Floating Point Unit), le CPU peut éga-
lement sauver les registres de cette unité (figure 6.29). Cette sauvegarde ne s’effectue que si le CPU
est configuré pour leffectuer. Cette configuration s’effectue via le registre “FPCCR” contenu dans les
registres de contrdle de la FPU 7.

Il charge ensuite dans le registre “LR” un code (figure 6.31) lui permettant de restaurer [’état du CPU
apres traitement.

6. Arm Architecture Procedure Calling Standard
7. STM32 Cortex®-M4 MCUs and MPUs programming manual (PM0214) - chapitre 4.6

Jacques Supcik, Daniel Gachet, Luca Haab 29

https://ado.pages.forge.hefr.ch/documentation/assets/references/procedure_call_standard.pdf
https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/stm32-cortexm4-programming-manual.pdf

HEIA-FR Architecture des Ordinateurs

Offset
Nouveau SP, ¢ Nouveau SP, 7
8 octets alignés RO 0x00 RO 8 octets alignés
R1 0x04 R1
R2 0x08 R2
R3 0x0c R3 _ Contexte
R12 0x10 R12 de base
LR (R14) 0x14 LR (R14)
Return Address 0x18 Return Address
XPSR Ox1c XPSR
SP original
i Reserved 0x20 8 octets alignés
SP original) 0x24
4 octets alignés

FIGURE 6.29 - Profil M - Contexte

Offset
Nouveau SP, Nouveau SP, T\ 7
8 octets aIignés—) RO 0x00 RO 8 octets alignés

R1 0x04 R1
R2 0x08 R2
R3 0x0c R3 _ Contexte
R12 0x10 R12 de base

LR (R14) 0x14 LR (R14)

Return Address 0x18 Return Address
XPSR Ox1lc xPSR)
Contexte

SO 0x20 SO I stendu
S1 0x24 S1
S2 0x28 S2

S3-513 S3-S13
S14 0x58 S14
S15 0x5c¢ S15

FPSCR 0x60 FPSCR
Reserved 0x64 Reserved
SP original
o Reserved 0x68 (—8 octets alignés
SP original Ox6C
4 octets alignés

FIGURE 6.30 - Profil M - Contexte étendu

Code Mode au retour Pile au retour Contexte
OXFFFF'FFE1 Handler Main (MSP) étendu
OXFFFF'FFE9 Thread Main (MSP) étendu
OXFFFF'FFED Thread Process (PSP) étendu
OXFFFF'FFF1 Handler Main (MSP) de base
OxFFFF'FFF9 Thread Main (MSP) de base
OXFFFF'FFFD Thread Process (PSP) de base

FIGURE 6.31 - Profil M - Codes pour la restauration du contexte

30 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs

HEIA-FR

6.4.4 Priorité et préemption

La notion de priorité des interruptions et exceptions prend tout son sens lorsque celles-ci surviennent

simultanément. Les uC du profil M utilisent un systéme de priorité des événements ou plus la valeur

de la priorité est faible, plus le niveau de priorité de ’événement est élevé (figure 6.32).

N°devecteur | N°IRQ Priorité Description

1 - -3 (la plus haute) | Reset

2 -14 -2 NMI

3 -13 -1 Hard Fault

4 -12 0 (configurable) | Memory Management Fault
5 -11 0 (configurable) | Bus Fault

6 -10 0 (configurable) | Usage Fault

11 -5 0 (configurable) | SvCall

14 -2 0 (configurable) [PendSV

15 -1 0 (configurable) | SysTick

16 et supérieur | 0etsupérieur | 0 (configurable) | Interruptions externes (IRQ)

FIGURE 6.32 - Profil M - Priorités des interruptions

Les sources internes “Reset”, “NMI” et “HardFault” s’exécutent avec des priorités fixes de -3, -2
et -1 respectivement. Le logiciel peut définir la priorité (valeur entre 0 et 255) pour toutes les autres
sources. La priorité des sources internes, sources avec un numéro IRQ négatif, se configure via les
registres “SHPR1” “SHPR2” et “SHPR3” contenu dans le “SCB” 8, tandis que les sources externes se
configurent via les registres du contréleur d’interruptions (NVIC - Nested Vector Interrupt Controler)°.
Le niveau de priorité d’une source se laisse configurer avec la fonction “nvic_set_priority”du
module “nvic.h”

Le uC traite les exceptions ou interruptions séquentiellement selon leur priorité en débutant par la
plus prioritaire. Lorsque plusieurs événements se lévent simultanément et ont la méme priorité, ce-
lui ayant le numéro le plus bas est prioritaire. Seul un événement avec une priorité plus élevée peut
le préempter. Afin d’affiner le contréle des priorités et du systeme de préemption, chaque priorité
se compose de deux champs, un groupe de priorité et une sous-priorité. Les bits de poids fort dé-
finissent le groupe et les bits de poids faible la sous-priorité. Le registre “ATRCR” contenu dans le
“SCB” permet de définir le nombre de bits déterminant la taille du groupe de priorité. La fonction

8. STM32 Cortex®-M4 MCUs and MPUs programming manual (PM0214) - chapitre 4.4
9. STM32 Cortex®-M4 MCUs and MPUs programming manual (PM0214) - chapitre 4.3

Jacques Supcik, Daniel Gachet, Luca Haab 31

https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/stm32-cortexm4-programming-manual.pdf
https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/stm32-cortexm4-programming-manual.pdf

HEIA-FR Architecture des Ordinateurs

“scb_set_priority_grouping” dumodule “scb.h” permet de configurer la taille du groupe
de priorité.

Lors de lalevée d’uneinterruption ou d’une exception, seul le groupe de priorité détermine la préemp-
tion d’un traitement en cours. Si de multiples interruptions arrivent dans le méme groupe de priorité,
alors la sous-priorité sert a la précédence du traitement.

6.4.5 Gestion de la levée des interruptions

Le logiciel peut gérer la levée des interruptions et d’exceptions au niveau du CPU sur trois niveaux
différents :

— Au premier niveau, le registre spécial “BASEPRI” permet au logiciel de restreindre la levée
d’interruptions aux sources ayant une priorité plus élevée qu’une certaine valeur.
movs r0, #0Ox80
msr basepri, ro
— Au deuxiéme niveau, le registre spécial “PRIMASK” permet au logiciel de bloquer la levée de
toutes les interruptions ayant un niveau de priorité inférieur ou égal a 0.
cpsid i
cpsie i
— Au troisiéme niveau, le registre spécial “FAULTMASK” permet au logiciel de désactiver la le-
vée de toutes les interruptions ayant un niveau de priorité inférieur ou égal a -1.

cpsid f
cpsie f

o« ” o«

Lesfonctions“cm_enable_interrupts” “cm_disable_interrupts”,“cm_enable_faults”

19

et“cm_disable_faults”dumodule“cortex.h"” permettent de gérer 'activation et le blocage

des interruptions au niveau du CPU.

6.4.6 Controleur d’interruptions

Le contrleur d’interruptions NVIC est capable de multiplexer, selon les réalisations, jusqu’a 496
sources d’interruptions. Le registre “ICTR” contenu dans l'espace de contréle du systeme (SCS -
System Control Space) ° indique le nombre spécifique a implémentation déployée sur le pC. Cha-
cune de ces sources correspond a une ligne de requétes d’interruptions d’un périphérique interne au
processeur.

10. Armv7-M Architecture Reference Manual - chapitre B3.2

32 Jacques Supcik, Daniel Gachet, Luca Haab

https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/armv7-m_reference-manual.pdf

Architecture des Ordinateurs HEIA-FR

Pour gérer les requétes de ces sources, le NVIC dispose de six sets de registres 1. Le module “nvic.h”
de la bibliotheque “1libopencm3” offre des fonctions pour manipuler ces registres.

— “ISER” (Interrupt Set-Enable Registers), ce registre permet d’autoriser la levée d’interruptions
pour les différentes lignes de requétes (fonction “nvic_enable_1irg”).

— “ICER” (Interrupt Clear-Enable Registers), ce registre permet de bloquer la levée d’interrup-
tions pour les différentes lignes de requétes (fonction “nvic_disable_irqg”).

— “ISPR” (Interrupt Set-Pending Registers), ce registre indique si une ou plusieurs interruptions
sont en attente de traitement. Il permet également de générer, de simuler, par logiciel, la levée
d’interruptions pour les lignes de requétes données (fonctions “nvic_get_pending_irg”
et“nvic_set_pending_irqg”).

— “ICPR” (Interrupt Clear-Pending Registers), ce registre permet de quittancer une requéte en
attente pour les différentes lignes de requétes (fonction “nvic_clear_pending_irg”).

— “IABR” (Interrupt Active Bit Registers), ce registre indique si la requéte d’une source d’interrup-
tion est en cours de traitement (fonction “nvic_get_active_irg”).

— “IPR” (Interrupt Priority Registers), ce registre permet de configurer la priorité de la ligne de
requétes donnée lors de la levée d’interruptions (fonction “nvic_set_priority”).

Le registre “STIR” contenu dans le SCS permet également de générer, de simuler, la levée d’inter-
ruption pour une source donnée (fonction “nvic_generate_software_interrupt”).Lalevée
d’interruptions n’est possible que si les requétes pour une ligne d’interruptions donnée ont préalable-
ment été autorisées.

6.4.7 Unité de gestion des entrées/sorties

L'unité de gestion des entrées/sorties (GPIO - General Purpose Input Output) sert a piloter 16 broches
(Pin) numériques. En utilisant les fonctions du module “gpio. h” chaque broche peut se configurer
aussi bien en entrée qu’en sortie.

Configurés en entrée, des périphériques externes au WP, tels des boutons-poussoirs, peuvent les
utiliser comme ligne de requétes d’interruptions via le controleur EXTI (External Interrupt/Event
Controller). Ce controleur multiplexe 8 GPIO (figure 6.33). La broche servant de ligne de requéte est
choisie par les registres “syscfg_exticrl” a “syscfg_exticr4” ou en utilisant la fonction
“exti_select_source” dumodule “exti.h”

Chaque broche peut de générer une interruption si elle détecte (figure 6.34)

— Flanc descendant (Falling Edge)
— Flanc montant (Rising Edge)

La fonction “exti_set_trigger” dumodule “exti.h” serta configurer le trigger.

11. Armv7-M Architecture Reference Manual - chapitre B3.4

Jacques Supcik, Daniel Gachet, Luca Haab 33

https://ado.pages.forge.hefr.ch/documentation/assets/datasheets/stm32/armv7-m_reference-manual.pdf

HEIA-FR Architecture des Ordinateurs

Broche
&—>» GPIOAX —>

IRQ-Line

EXTIx

Broche
&—>» GPIOHx ——>»

FIGURE 6.33 - Profil M - EXTI

FIGURE 6.34 - Profil M - EXT| Systeme de détections

Lors de la levée d’une interruption sur une broche, 'unité EXTI la propage vers le contréleur NVIC. Afin
que cette interruption atteigne le CPU, il faut premiérement 'autoriser sur le contréleur EXTl ainsi que
sur le contréleur NVIC. Les fonctions “exti_enable_request” et “exti_disable_request”
permettent gérer la levée d’interruption sur le controleur EXTI.

La levée d’une interruption externe doit étre quittancée sans quoi elle reste active. Ce quittancement
doit s’effectuer durant le traitement de 'interruption avec la fonction “exti_reset_request”du

module “exti.h”

6.5 Exercices

Quelques exercices pour assimiler la matiere de ce chapitre.

6.5.1 Exercice 1: Concept général

Décrivez succinctement le concept général d’une interruption, d’exception et de leur traitement.

34 Jacques Supcik, Daniel Gachet, Luca Haab

Architecture des Ordinateurs HEIA-FR

6.5.2 Exercice 2 : Types d’événements

Citez les types d’événements pouvant survenir sur un systéme a pP.
Décrivez succinctement la différence entre des événements ou interruptions synchrones et asyn-
chrones.

6.5.3 Exercice 3 : Séquence d’interruption

Citez les 4 étapes principales du traitement d’une interruption.

6.5.4 Exercice 4: Table des vecteurs d’interruptions

Décrivez la fonction de la table des vecteurs d’interruptions.
Indiquez son contenu.

6.5.5 Exercice 5 : Commutation de contexte

Expliquez la commutation de contexte d’interruption.
Décrivez la latence d’interruptions.
Décrivez la gigue d’interruptions et donnez quelques exemples.

6.5.6 Exercice 6: Interruptions imbriquées

Décrivez le principe d’interruptions imbriquées.

6.5.7 Exercice 7 : Section critique

Quel est le résultat de linstruction ci-dessous si durant I’exécution de l'instruction une interruption
matérielle est levée et appelle la fonction “irq_handler”?

int len = 0;
len += 2;

void irqg_handler(void)

{

len += 4;

}

Jacques Supcik, Daniel Gachet, Luca Haab 35

HEIA-FR Architecture des Ordinateurs

6.5.8 Exercice 8 : Interruptions matérielles

Citez les 3 techniques pour connecter des périphériques d’entrées/sorties a un processeur pour un
traitement interruptif.

6.5.9 Exercice 9 : Génération d’exceptions

Imaginez des petits codes permettant de générer les exceptions suivantes :

— Une interruption logicielle

— Uneinstruction non définie

— Une exception “data abort”

— Une exception “prefetch abort”

Indiquez pour chacune de ces exceptions le numéro de vecteur pour un uC du profil M.
6.5.10 Exercice 10 : Gestion de la levée d’interruptions

Implémentez en assembleur les deux fonctions ci-dessous permettant de bloquer et d’autoriser les
interruptions au niveau du CPU. Réalisez ces fonctions pour les uC du profil M.

void interrupt_enable(void);
void interrupt_disable(void);

6.5.11 Exercice 11 : Priorité d’interruptions

Démontez a l'aide de “timers” la priorité d’interruptions et la préemption.

6.5.12 Exercice 12 : Traitement d’un bouton-poussoir par interruption

Détectez les changements d’état d’'un bouton-poussoir a l'aide d’interruptions.

36 Jacques Supcik, Daniel Gachet, Luca Haab

	Traitement des interruptions
	Concept général
	Types d'événements
	Séquence d'interruption
	Table des vecteurs d'interruptions
	Commutation de contexte
	Interruptions imbriquées
	Gestion de la levée des interruptions

	Interruptions matérielles
	Scrutation logicielle
	Priorité d'interruption
	Interruption vectorisée

	Profil A
	Sources d'interruptions
	Table des vecteurs d'interruptions
	Traitement de l'interruption par le CPU
	Traitement de l'interruption par le logiciel
	Principe pour le traitement des interruptions matérielles
	Gestion de la levée d'interruptions
	Priorité et préemption
	Contrôleur d'interruptions
	Unité de gestion des entrées/sorties

	Profil M
	Sources d'interruptions
	Table des vecteurs d'interruptions
	Traitement de l'interruption par le CPU
	Priorité et préemption
	Gestion de la levée des interruptions
	Contrôleur d'interruptions
	Unité de gestion des entrées/sorties

	Exercices
	Exercice 1 : Concept général
	Exercice 2 : Types d'événements
	Exercice 3 : Séquence d'interruption
	Exercice 4 : Table des vecteurs d'interruptions
	Exercice 5 : Commutation de contexte
	Exercice 6 : Interruptions imbriquées
	Exercice 7 : Section critique
	Exercice 8 : Interruptions matérielles
	Exercice 9 : Génération d'exceptions
	Exercice 10 : Gestion de la levée d'interruptions
	Exercice 11 : Priorité d'interruptions
	Exercice 12 : Traitement d'un bouton-poussoir par interruption

